Year 2020, Volume 23 , Issue 4, Pages 197 - 208 2020-12-03



The overarching aim of this study is to define mercury (Hg) isotopic features of plants which have different photosynthetic pathways (C3, C4 and CAM) and to understand if different parts of the plants have different Hg isotopic fractionation behavior. For this, carbon isotopic values of terrestrial plants were analyzed which were used to determine the photosynthetic pathways of plants. Plants were sub-sampled into leaves, stems and roots and their Hg isotopic values were analyzed. Results showed that C3 and C4 plants exhibit mass dependent (even Hg isotopes) and mass independent Hg isotope fractionation (odd Hg isotopes). Both C3 and C4 plants are enriched in light isotopes, but the degree of mass fractionation is approximately three times greater in C3 plants, than in C4 plants. Hg in both C3 and C4 plants exhibit negative MIF isotope effect which reported as depletion “and no clear MIF effect. These findings suggest a connection between the Hg isotopic composition and the photosynthetic pathway. In addition, the leaves are slightly more fractionated than the roots. Differences in the degree of MIF between roots and leaves suggest that they obtain Hg from different sources.
Mercury isotopes, , photosynthetic pathways, mass independent fractionation, isotope fractionation
  • Bergquist, B. A., & Blum, J. D. (2007). Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849), 417 LP – 420. Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J., & Xie, Z. (2008). Natural mercury isotope variation in coal deposits and organic soils. Environmental Science and Technology, 42(22), 8303–8309. Blum, J. D., Johnson, M. W., Gleason, J. D., Demers, J. D., Landis, M. S., & Krupa, S. (2012). Mercury Concentration and Isotopic Composition of Epiphytic Tree Lichens in the Athabasca Oil Sands Region. In K. E. B. T.-D. in E. S. Percy (Ed.), Alberta Oil Sands (Vol. 11, pp. 373–390). Elsevier. Cai, H., & Chen, J. (2016). Mass-independent fractionation of even mercury isotopes. Science Bulletin, 61(2), 116–124. Carignan, J., Estrade, N., Sonke, J. E., & Donard, O. F. X. (2009). Odd Isotope Deficits in Atmospheric Hg Measured in Lichens. Environmental Science & Technology, 43(15), 5660–5664. Das, R., Salters, V. J. M., & Odom, A. L. (2009). A case for in vivo mass-independent fractionation of mercury isotopes in fish. Geochemistry, Geophysics, Geosystems, 10(11), 1–12. Demers, J. D., Blum, J. D., & Zak, D. R. (2013). Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 27(1), 222–238. Donovan, P. M., Blum, J. D., Yee, D., Gehrke, G. E., & Singer, M. B. (2013). An isotopic record of mercury in San Francisco Bay sediment. Chemical Geology, 349–350, 87–98. Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a Global Pollutant: Sources, Pathways, and E ff ects. Environmental Science & Technology, 47, 4967–4983. Durnford, D., Dastoor, A., Figueras-Nieto, D., & Ryjkov, A. (2010). Long range transport of mercury to the Arctic and across Canada. Atmospheric Chemistry and Physics, 10(13), 6063–6086. Foucher, D., Hintelmann, H., Al, T. A., & MacQuarrie, K. T. (2013). Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): Tracing mercury contamination and transformation. Chemical Geology, 336, 87–95. Gehrke, G. E., Blum, J. D., & Marvin-DiPasquale, M. (2011). Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geochimica et Cosmochimica Acta, 75(3), 691–705. Ghosh, S, Xu, Y., Humayun, M., & Odom, L. (2008). Mass-independent fractionation of mercury isotopes in the environment. Geochemistry, Geophysics, Geosystems, 9(3), 1–10. Ghosh, Sanghamitra, Schauble, E. A., Lacrampe Couloume, G., Blum, J. D., & Bergquist, B. A. (2013). Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments. Chemical Geology, 336, 5–12. Ghosh, Sulata. (2010). Itotopic Composition of Mercury in the Atmosphere. Hintelmann, H., & Zheng, W. (2011, November 18). Tracking Geochemical Transformations and Transport of Mercury through Isotope Fractionation. Environmental Chemistry and Toxicology of Mercury. Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R. M., Hajdas, I., & Kretzschmar, R. (2015). Mercury Deposition and Re-emission Pathways in Boreal Forest Soils Investigated with Hg Isotope Signatures. Environmental Science and Technology, 49(12), 7188–7196. Lamborg, C. H., Fitzgerald, W. F., Damman, A. W. H., Benoit, J. M., Balcom, P. H., & Engstrom, D. R. (2002). Modern and historic atmospheric mercury fluxes in both hemispheres: Global and regional mercury cycling implications. Global Biogeochemical Cycles, 16(4), 51-1-51–11. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., … Seigneur, C. (2007). A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Source: Ambio, 36(1), 19–32. Pirrone, N., Keeler, G. J., & Nriagu, J. O. (1996). Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30(17), 2981–2987. Schroeder, H. (1998). Atmospheric Mercury-An Overview. Atmospheric Environment, 32(5). Yin, R., Feng, X., Li, X., Yu, B., & Du, B. (2014). Trends and advances in mercury stable isotopes as a geochemical tracer. Trends in Environmental Analytical Chemistry, 2, 1–10. Yin, R., Feng, X., & Meng, B. (2013). Stable Mercury Isotope Variation in Rice Plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environmental Science & Technology, 47(5), 2238–2245. Yuan, S., Zhang, Y., Chen, J., Kang, S., Zhang, J., Feng, X., … Huang, Q. (2015). Large Variation of Mercury Isotope Composition During a Single Precipitation Event at Lhasa City, Tibetan Plateau, China. Procedia Earth and Planetary Science, 13, 282–286. Zadnik, M. G., Specht, S., & Begemann, F. (1989). Revised isotopic composition of terrestrial mercury. International Journal of Mass Spectrometry and Ion Processes, 89(1), 103–110. Zheng, W., & Hintelmann, H. (2010). Nuclear Field Shift Effect in Isotope Fractionation of Mercury during Abiotic Reduction in the Absence of Light. The Journal of Physical Chemistry A, 114(12), 4238–4245. Zheng, W., Obrist, D., Weis, D., & Bergquist, B. A. (2016). Mercury isotope compositions across North American forests. Global Biogeochemical Cycles, 30(10), 1475–1492.
Primary Language tr
Subjects Geosciences, Multidisciplinary
Journal Section Geological Engineering

Orcid: 0000-0002-9003-5439
Author: Ayça DOĞRUL SELVER (Primary Author)
Institution: kahramanmaraş sütçü imam üniversitesi, müendislik fakültesi
Country: Turkey

Supporting Institution Milli Eğitim Bakanlığı

Application Date : June 25, 2020
Acceptance Date : September 25, 2020
Publication Date : December 3, 2020

APA Doğrul Selver, A . (2020). STABLE MERCURY ISOTOPE FRACTIONATION BEHAVIOURS OF PLANTS . Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi , 23 (4) , 197-208 . DOI: 10.17780/ksujes.757880