Research Article
BibTex RIS Cite

Investigation of the effect of polymeric and non-polymeric materials in the hole transfer layer on the performance of perovskite solar cell

Year 2022, Volume: 25 Issue: 1, 1 - 6, 03.03.2022
https://doi.org/10.17780/ksujes.982464

Abstract

In recent decades, due to advances in various industries, the use of renewable energy sources has increased significantly. Solar cells are one of the important tools in the use of renewable energies. Between the different types of solar cells, recently, perovskite solar cells, because of some advantages like low costs of materials used in their fabrication, simple manufacturing process, and high conversion efficiency, have gained the attention of many researchers. Emerging technology and recent research activities have helped perovskite solar cells to achieve high efficiency, which is highly dependent on the components and structures of the solar cell system. One way to achieve high efficiency is to use polymeric and non-polymeric materials as electron transporters (ETMs), hole transporters (HTMs), or as a stimulus to increase the performance durability of perovskite solar cells. Simulation tool is a very effective tool for designing solar cells. In this study, by using COMSOL Multiphysics software, the effect of using different hole transfer layers, both polymeric and non-polymeric, has been investigated. For this purpose, three HTM layers (Spiro-OMETAD, CuSCN, P3HT) have been investigated. The results represented that the efficiencies for these three materials were (16.8%, 15.7%, 12%), respectively, and Spiro-OMETAD has been more efficient.

References

  • Deceglie, M. G., Ferry, V. E., Alivisatos, A. P., & Atwater, H. A. (2012). Design of nanostructured solar cells using coupled optical and electrical modeling. Nano letters, 12(6), 2894-2900.
  • Gavrilov, S. A., Dronov, A. A., Shevyakov, V. I., Belov, A. N., & Poltoratskii, E. A. (2009). Ways to increase the efficiency of solar cells with extremely thin absorption layers. Nanotechnologies in Russia, 4(3), 237-243.
  • Jaffe, J. E., Kaspar, T. C., Droubay, T. C., Varga, T., Bowden, M. E., & Exarhos, G. J. (2010). Electronic and defect structures of CuSCN. The Journal of Physical Chemistry C, 114(19), 9111-9117.
  • Karimi, E., & Ghorashi, S. M. B. (2017). Simulation of perovskite solar cell with P 3 HT hole-transporting materials. Journal of Nanophotonics, 11(3), 032510.
  • Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
  • Minemoto, T., & Murata, M. (2014). Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. Journal of applied physics, 116(5), 054505.
  • OZCALIK, H. R., YILMAZ, S., & KILIC, E. (2013). Güneş Pilinin Bir Diyotlu Eşdeğer Devre Yardımıyla Matematiksel Modelinin Çıkartılması ve Parametrelerinin İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 16(1), 23-29.
  • Pattanasattayavong, P., Ndjawa, G. O. N., Zhao, K., Chou, K. W., Yaacobi-Gross, N., O'Regan, B. C., ... & Anthopoulos, T. D. (2013). Electric field-induced hole transport in copper (I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chemical Communications, 49(39), 4154-4156.
  • Pattanasattayavong, P., Yaacobi‐Gross, N., Zhao, K., Ndjawa, G. O. N., Li, J., Yan, F., ... & Anthopoulos, T. D. (2013). Hole‐transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution at room temperature. Advanced Materials, 25(10), 1504-1509.
  • Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., ... & Grätzel, M. (2014). Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature communications, 5(1), 1-6.
  • Salihmuhsin, M., & Aldwihi, B. A. (2019). Modeling of photovoltaic panels using Matlab/Simulink. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(2), 78-87.
  • Tan, K., Lin, P., Wang, G., Liu, Y., Xu, Z., & Lin, Y. (2016). Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics, 126, 75-80.
  • Zandi, S., & Razaghi, M. (2019). Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Solar Energy, 179, 298-306.
  • Zhang, A., Chen, Y., & Yan, J. (2016). Optimal design and simulation of high-performance organic-metal halide perovskite solar cells. IEEE journal of quantum electronics, 52(6), 1-6.
  • Zhou, Q., Jiao, D., Fu, K., Wu, X., Chen, Y., Lu, J., & Yang, S. E. (2016). Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells. Solar Energy, 123, 51-56.

Delik transfer tabakasındaki polimerik ve polimerik olmayan malzemelerin perovskit güneş pillerinin performansına etkisinin araştırılması

Year 2022, Volume: 25 Issue: 1, 1 - 6, 03.03.2022
https://doi.org/10.17780/ksujes.982464

Abstract

Son yıllarda, çeşitli endüstri ve teknolojilerdeki gelişmeler nedeniyle yenilenebilir enerji kaynaklarının kullanımı önemli ölçüde artmıştır. Güneş pilleri, yenilenebilir enerjilerin kullanımında en önemli araçlardan biridir. Farklı güneş pilleri türleri arasında, son zamanlarda perovskit güneş pilleri, imalatlarında kullanılan malzemelerin düşük maliyeti, basit üretim süreci ve yüksek dönüşüm verimliliği (aynı fiyat aralığındaki diğer güneş pillerine kıyasla) gibi bazı avantajlardan dolayı bazı avantajlara sahiptir. birçok araştırmacının dikkatini çekmiştir. Gelişen teknoloji ve son araştırma faaliyetleri, güneş pili sisteminin bileşenlerine ve yapılarına büyük ölçüde bağlı olan yüksek verimliliğe ulaşmak için perovskit güneş pillerine yardımcı olmuştur. Yüksek verim elde etmenin bir yolu, polimerik ve polimerik olmayan malzemeleri elektron taşıyıcılar (ETM'ler), delik taşıyıcılar (HTM'ler) veya perovskite güneş pillerinin performansını, kararlılığını ve dayanıklılığını artırmak için bir uyarıcı olarak kullanmaktır. Güneş pili simülasyonu ve modellemesi, güneş pilleri tasarlamak ve üretmek için önemli ve çok etkili bir araçtır. Bu çalışmada, COMSOL Multiphysics yazılımında bir simülasyon aracı kullanılarak, hem polimerik hem de polimerik olmayan farklı delik transfer katmanlarının kullanılmasının etkisi araştırılmıştır. Bu amaçla üç HTM katmanı (Spiro-OMETAD, CuSCN, P3HT) incelenmiştir. Sonuçlar, bu üç malzeme için verimliliklerin sırasıyla (16.8%, 15.7%, 12%) olduğunu ve Spiro-OMETAD'ın daha verimli olduğunu gösterdi.

References

  • Deceglie, M. G., Ferry, V. E., Alivisatos, A. P., & Atwater, H. A. (2012). Design of nanostructured solar cells using coupled optical and electrical modeling. Nano letters, 12(6), 2894-2900.
  • Gavrilov, S. A., Dronov, A. A., Shevyakov, V. I., Belov, A. N., & Poltoratskii, E. A. (2009). Ways to increase the efficiency of solar cells with extremely thin absorption layers. Nanotechnologies in Russia, 4(3), 237-243.
  • Jaffe, J. E., Kaspar, T. C., Droubay, T. C., Varga, T., Bowden, M. E., & Exarhos, G. J. (2010). Electronic and defect structures of CuSCN. The Journal of Physical Chemistry C, 114(19), 9111-9117.
  • Karimi, E., & Ghorashi, S. M. B. (2017). Simulation of perovskite solar cell with P 3 HT hole-transporting materials. Journal of Nanophotonics, 11(3), 032510.
  • Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
  • Minemoto, T., & Murata, M. (2014). Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. Journal of applied physics, 116(5), 054505.
  • OZCALIK, H. R., YILMAZ, S., & KILIC, E. (2013). Güneş Pilinin Bir Diyotlu Eşdeğer Devre Yardımıyla Matematiksel Modelinin Çıkartılması ve Parametrelerinin İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 16(1), 23-29.
  • Pattanasattayavong, P., Ndjawa, G. O. N., Zhao, K., Chou, K. W., Yaacobi-Gross, N., O'Regan, B. C., ... & Anthopoulos, T. D. (2013). Electric field-induced hole transport in copper (I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chemical Communications, 49(39), 4154-4156.
  • Pattanasattayavong, P., Yaacobi‐Gross, N., Zhao, K., Ndjawa, G. O. N., Li, J., Yan, F., ... & Anthopoulos, T. D. (2013). Hole‐transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution at room temperature. Advanced Materials, 25(10), 1504-1509.
  • Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., ... & Grätzel, M. (2014). Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature communications, 5(1), 1-6.
  • Salihmuhsin, M., & Aldwihi, B. A. (2019). Modeling of photovoltaic panels using Matlab/Simulink. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(2), 78-87.
  • Tan, K., Lin, P., Wang, G., Liu, Y., Xu, Z., & Lin, Y. (2016). Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics, 126, 75-80.
  • Zandi, S., & Razaghi, M. (2019). Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Solar Energy, 179, 298-306.
  • Zhang, A., Chen, Y., & Yan, J. (2016). Optimal design and simulation of high-performance organic-metal halide perovskite solar cells. IEEE journal of quantum electronics, 52(6), 1-6.
  • Zhou, Q., Jiao, D., Fu, K., Wu, X., Chen, Y., Lu, J., & Yang, S. E. (2016). Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells. Solar Energy, 123, 51-56.
There are 15 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Nagihan Delibaş 0000-0001-5752-062X

Asghar Moradi 0000-0003-0932-8988

Seyyedreza Hosseini 0000-0002-0946-7489

Morteza Maleki 0000-0003-4856-2072

Mahsa Bahramgour 0000-0002-2925-1538

Aligholi Niaie 0000-0001-5580-4266

Publication Date March 3, 2022
Submission Date August 20, 2021
Published in Issue Year 2022Volume: 25 Issue: 1

Cite

APA Delibaş, N., Moradi, A., Hosseini, S., Maleki, M., et al. (2022). Investigation of the effect of polymeric and non-polymeric materials in the hole transfer layer on the performance of perovskite solar cell. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 1-6. https://doi.org/10.17780/ksujes.982464