Research Article
BibTex RIS Cite

POMZA AGREGANIN ÇİMENTO ESASLI TİKSOTROPİK RÖTRESİZ İNCE TAMİR HARCININ PERFORMANSINA ETKİSİ

Year 2022, Volume: 25 Issue: 2, 110 - 125, 03.06.2022
https://doi.org/10.17780/ksujes.1090618

Abstract

Bu deneysel araştırmada, 0/100 μm ve 0/2 mm tane boyutlarında öğütülmüş pomzanın çimentolu tamir harçlarında kullanımı ile harcın fiziksel, mekanik ve özellikle rötre yapma karakteristiği üzerine detaylı bir inceleme gerçekleştirilmiştir. Yapılan deneysel analizlerde pomza agreganın ince ve iri boyutlarda kullanımında tamir harcının yoğunluğuna, gözeneklilik oranına, basınç dayanımı, eğilme dayanımı, elastisite özelliklerine ve kuruma büzülmesi değerlerine olan etkileri detaylı analiz edilmiştir. Pomza bileşenli karışımlarda ince:iri oranı sırasıyla her bir karışımda ağırlıkça 20:80, 30:70, 40:60, 50:50, 60:40, 70:30 ve 80:20 oranları kullanılmıştır. Her ne kadar pomza agregalı örneklerin kuruma büzülmesi oranları kontrol harcından görece yüksek bir değerde tespit edilse de bütün pomza agregalı tamir harcı örneklerinin büzülme değerleri ilgili standartların öngördüğü değer aralığında yer almaktadır. Harç karışımlarında iri boyut pomza agreganın daha fazla kullanıldığı örneklerin rötre miktarının, ince boyut pomza agregalı örneklerin rötre miktarından daha düşük olduğu tespit edilmiştir. Bu durum harcın gözeneklilik oranıyla ilişkilendirilmiş, gözeneklilik oranı daha yüksek olan harçların rötresi daha düşük olarak tespit edilmiştir.

References

  • Ahmadi, M., Farzin, S., Hassani, A. & Motamedi, M. (2017). Mechanical properties of the concrete containing recycled fibers and aggregates. Construction and Building Materials, 144, 392–398. https://doi.org/10.1016/j.conbuildmat.2017.03.215
  • ASTM C109, Standard Test Method for Flexural Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, 2017.
  • ASTM C348, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, 2021 Edition, April 1, 2021.
  • ASTM C596, Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement, , ASTM International, West Conshohocken, PA, 2018.
  • ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, , ASTM International, West Conshohocken, PA, 2017.
  • ASTM C928, Standard Specification for Packaged, Dry, Rapid-Hardening Cementitious Materials for Concrete Repairs, ASTM International, 2005 Edition, May 1, 2005.
  • Benharzallah, K., Bouhicha, M., Kenai, S. & Courard, L. (2018). Formulation of low cost eco-repair mortar based on dune sand and Stipa tenacissima microfibers plant. Construction and Building Materials, 171, 950–959. https://doi.org/10.1016/j.conbuildmat.2018.03.200
  • EMACO S88C (Thixotropic), 2022, Cementitious trowel applied shrinkage compensated structural repair mortar, A technical document, BASF Construction Chemicals New Zealand Ltd.
  • Fixa, Rötresiz grout harçları ne tip uygulamalarda kullanılır?. (2017). http://fixa.com.tr/?/sss/rotresiz-grout-harclari-ne-tip-uygulamalarda-kullanilir Accessed 20.03.22.
  • Kawashima, S. & Shah, S. P. (2011). Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cement and Concrete Composites, 33, 2, 201–208. https://doi.org/10.1016/j.cemconcomp.2010.10.018
  • Curtis, Lightweight Repair Mortar, Fast-setting repair mortar, A technical Report, ISSUE 02ASS, (2001). https://curtis-enterprises.com/html/Industrial%20Flooring/Mortars%20&%20Grouts/Repair%20Mortars/Lightweight%20Repair%20Mortar.pdf Accessed 20.03.22.
  • Mirza J., Mirza M. S. & Lapointe R. (2002). Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Construction and Building Materials, 16(6), 365–374. https://doi.org/10.1016/S0950-0618(02)00027-2
  • Mohammadi, M., Moghtadaei, R. M. & Samani, R. A. (2014). Influence of silica fume and metakaolin with two different types of interfacial adhesives on the bond strength of repaired concrete. Construction and Building Materials, 51, 141–150. https://doi.org/10.1016/j.conbuildmat.2013.10.048
  • Xiong, G., Liu, J. & Li, G. (2002). A way for improving interfacial transition zone between concrete substrate and repair materials. Cement and Concrete Research, 32(12), 1877–1881. https://doi.org/10.1016/S0008-8846(02)00840-2
  • Rapoport, J. R. & Shah, S. P. (2005). Cast-in-place cellulose fiber-reinforced cement paste, mortar, and concrete. ACI Materials Journal, 102, 5, 299–306. Retrieved from https://www.proquest.com/scholarly-journals/cast-place-cellulose-fiber-reinforced-cement/docview/197991522/se-2?accountid=141837
  • Shaikh, F. U. A. (2016). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277–287. https://doi.org/10.1016/j.ijsbe.2016.05.009
  • Tarmac, “Pozament Concrete Repair”, Pozament – Tarmac Building Products Ltd, Swains Park Industrial Estate. (2022) www.pozament.co.uk Accessed 20.03.22.
  • Tayeh, B. A., Bakar, B. H. A. & Johari, M. A. M. (2013). The relationship between substrate roughness parameters and bond strength of ultra-high-performance fiber concrete. Journal of Adhesion Science and Technology, 27(16), 1790–1810. https://doi.org/10.1080/01694243.2012.761543
  • Toledo Filho, R. D., Ghavami, K., Sanjuán, M. A. & England, G. L. (2005). Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and Concrete Composites, 27(5), 537–546. https://doi.org/10.1016/j.cemconcomp.2004.09.005
  • TS EN 459-1, Yapı kireci - Bölüm 1: Tarifler, özellikler ve uygunluk kriterleri, 2015.

THE EFFECT OF PUMICE AGGREGATE ON THE PERFORMANCE OF CEMENT-BASED THIXOTROPIC NON-SHRINKAGE THIN REPAIR MORTAR

Year 2022, Volume: 25 Issue: 2, 110 - 125, 03.06.2022
https://doi.org/10.17780/ksujes.1090618

Abstract

In this experimental study, a detailed investigation was carried out on the physical, mechanical, and especially the shrinkage characteristics of cementitious repair mortars with the use of ground pumice in with 0/100 μm and 0/2 mm grain sizes. In the experimental analysis, the effects of the use of pumice aggregate in fine and coarse sizes on the density, porosity, compressive strength, flexural strength, elasticity properties and drying shrinkage values of the repair mortar were analyzed in detail. In mixtures with pumice component, the ratio of fine:coarse pumice, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30 and 80:20 by weight were used in mixtures, respectively. Although the drying shrinkage rates of test specimens were determined at a relatively higher value than the control mortar, the shrinkage values of all pumice aggregate repair mortar specimens were within the value range stipulated by the relevant standards. It was determined that the shrinkage amount of the specimens in which coarse size pumice aggregate was used more in mortar mixtures was lower than the shrinkage amount of the specimens with fine size pumice aggregate. This situation was associated with the porosity rate of the mortar, and the shrinkage of the mortars with higher porosity was determined to be lower.

References

  • Ahmadi, M., Farzin, S., Hassani, A. & Motamedi, M. (2017). Mechanical properties of the concrete containing recycled fibers and aggregates. Construction and Building Materials, 144, 392–398. https://doi.org/10.1016/j.conbuildmat.2017.03.215
  • ASTM C109, Standard Test Method for Flexural Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, 2017.
  • ASTM C348, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, 2021 Edition, April 1, 2021.
  • ASTM C596, Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement, , ASTM International, West Conshohocken, PA, 2018.
  • ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, , ASTM International, West Conshohocken, PA, 2017.
  • ASTM C928, Standard Specification for Packaged, Dry, Rapid-Hardening Cementitious Materials for Concrete Repairs, ASTM International, 2005 Edition, May 1, 2005.
  • Benharzallah, K., Bouhicha, M., Kenai, S. & Courard, L. (2018). Formulation of low cost eco-repair mortar based on dune sand and Stipa tenacissima microfibers plant. Construction and Building Materials, 171, 950–959. https://doi.org/10.1016/j.conbuildmat.2018.03.200
  • EMACO S88C (Thixotropic), 2022, Cementitious trowel applied shrinkage compensated structural repair mortar, A technical document, BASF Construction Chemicals New Zealand Ltd.
  • Fixa, Rötresiz grout harçları ne tip uygulamalarda kullanılır?. (2017). http://fixa.com.tr/?/sss/rotresiz-grout-harclari-ne-tip-uygulamalarda-kullanilir Accessed 20.03.22.
  • Kawashima, S. & Shah, S. P. (2011). Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cement and Concrete Composites, 33, 2, 201–208. https://doi.org/10.1016/j.cemconcomp.2010.10.018
  • Curtis, Lightweight Repair Mortar, Fast-setting repair mortar, A technical Report, ISSUE 02ASS, (2001). https://curtis-enterprises.com/html/Industrial%20Flooring/Mortars%20&%20Grouts/Repair%20Mortars/Lightweight%20Repair%20Mortar.pdf Accessed 20.03.22.
  • Mirza J., Mirza M. S. & Lapointe R. (2002). Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Construction and Building Materials, 16(6), 365–374. https://doi.org/10.1016/S0950-0618(02)00027-2
  • Mohammadi, M., Moghtadaei, R. M. & Samani, R. A. (2014). Influence of silica fume and metakaolin with two different types of interfacial adhesives on the bond strength of repaired concrete. Construction and Building Materials, 51, 141–150. https://doi.org/10.1016/j.conbuildmat.2013.10.048
  • Xiong, G., Liu, J. & Li, G. (2002). A way for improving interfacial transition zone between concrete substrate and repair materials. Cement and Concrete Research, 32(12), 1877–1881. https://doi.org/10.1016/S0008-8846(02)00840-2
  • Rapoport, J. R. & Shah, S. P. (2005). Cast-in-place cellulose fiber-reinforced cement paste, mortar, and concrete. ACI Materials Journal, 102, 5, 299–306. Retrieved from https://www.proquest.com/scholarly-journals/cast-place-cellulose-fiber-reinforced-cement/docview/197991522/se-2?accountid=141837
  • Shaikh, F. U. A. (2016). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277–287. https://doi.org/10.1016/j.ijsbe.2016.05.009
  • Tarmac, “Pozament Concrete Repair”, Pozament – Tarmac Building Products Ltd, Swains Park Industrial Estate. (2022) www.pozament.co.uk Accessed 20.03.22.
  • Tayeh, B. A., Bakar, B. H. A. & Johari, M. A. M. (2013). The relationship between substrate roughness parameters and bond strength of ultra-high-performance fiber concrete. Journal of Adhesion Science and Technology, 27(16), 1790–1810. https://doi.org/10.1080/01694243.2012.761543
  • Toledo Filho, R. D., Ghavami, K., Sanjuán, M. A. & England, G. L. (2005). Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and Concrete Composites, 27(5), 537–546. https://doi.org/10.1016/j.cemconcomp.2004.09.005
  • TS EN 459-1, Yapı kireci - Bölüm 1: Tarifler, özellikler ve uygunluk kriterleri, 2015.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Lütfullah Gündüz 0000-0003-2487-467X

Şevket Onur Kalkan 0000-0003-0250-8134

Publication Date June 3, 2022
Submission Date March 20, 2022
Published in Issue Year 2022Volume: 25 Issue: 2

Cite

APA Gündüz, L., & Kalkan, Ş. O. (2022). POMZA AGREGANIN ÇİMENTO ESASLI TİKSOTROPİK RÖTRESİZ İNCE TAMİR HARCININ PERFORMANSINA ETKİSİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(2), 110-125. https://doi.org/10.17780/ksujes.1090618