REY (Rare Earth Elements + Y) and Sc are strategic materials that are needed globally for areas requiring high technology such as the energy sector and electronics. Coals contain Rare Earth Elements along with many trace elements in their composition. In recent years, as the gap between REE's global demand and supply increases, the search for alternative sources has become increasingly important, especially for countries that depend heavily on imports of these materials. Particularly considered as waste material, coal and coal ash are considered a possible source for many elements, including REE. Turkish low-rank coals analyzed in this study have an average critical mineral abundance of 73.73 ppm (on a dry whole coal basis). Materials collected from the various Neogene coal fields in Turkey were found to contain a relatively higher amount of REY (>100 ppm) relative to the rest of the samples, which may be attributed to the volcaniclastic character of the sediment associated with the seams. In this study, it was determined that although the critical mineral contents of the investigated coals were higher than Turkish, World, USA, and China coals, they were not economic for production and could be taken into consideration by the development of production techniques.
Adamczyk, Z., Białecka, B., Całus-Moszko, J., Komorek, J., & Lewandowska, M. (2015). Rare earth elements of orzeskie beds of south-west part Upper Silesian Coal Basin (Poland). Arch. Min. Sci., 60 (14); 157-172.
Alonso, E., Sherman, A.M., Wallington, T.J., Everson, M.P., Field, F.R., Roth, R., & Kirchain, R.E. (2012). Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ. Sci. Technol., 46 (6): 3406-3414.
Altunsoy, M., Ozcelik, O., Ozdogan, M., & Güllüdağ, C.B. (2015). Major and Trace Element Contents in Coaly Units of the Pliocene Dursunlu Formation. Procedia Earth and Planetary Science. 15, 774-780.
Altunsoy, M., Özçelik, O., & Güllüdağ, C.B. (2017). Comparision of Major and Trace Element Enrichments of Pliocene Coal Fields from Karapınar and Ilgın (Konya) Basins (Turkey), Journal of Scientific and Engineering Research. 4, 269-275.
Altunsoy, M., Sarı, A., Özçelik, O., Engin, H., & Hökerek, S. (2016). Major and trace-element enrichments in the Karapınar coals (Konya, Turkey). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects., 38(1): 88-99.
Arbuzov, S.I., & Ershov, V.V. (2007). Geochemistry of Rare Elements in Coals of Siberia. DPrint, Tomsk, pp. 468.
Arbuzov, S.I., Ershov, V.V., Potseluev, A.A., & Rikhvanov, L.P. (2000). Rare Elements in Coals of the Kuznetsk Basin. Kemerovo. 248pp. (in Russian).
Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geoscience Frontiers. 10, 1285-1303.
Barka, A.A., Sakınç, M., Görür, N., Yılmaz, Y., Şengör, A.M.C., & Ediger, V.Ş. (1994). Is Aegean extension a consequence of the westerly escape of Turkey? American Geophysical Union (ASU) Spring Meeting, Baltimore, U.S.A. Abstracts, 75(16): 116–117.
Birk, D., & White, J.C. (1991). Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: element sites, distribution, mineralogy. Int. J. Coal Geol. 19, 219–251.
Całus-Moszko J., & Białecka B. (2013). Analiza możliwości pozyskania pierwiastków ziem rzadkich z węgli kamiennych i popiołów lotnych z elektrowni. Gospodarka Surowcami Mineralnymi – Mineral Resources Management. 29 (1): 67-80.
Cicioğlu Sutcu, E., & Karayigit, A.I. (2015). Mineral matter, major and trace element content of the Afşin–Elbistan coals, Kahramanmaraş, Turkey. Int. J. Coal Geol. 144, 111-129.
Cox, C., & Kynicky, J. (2018). The rapid evolution of speculative investment in the REE market before, during, and after the rare earth crisis of 2010–2012. Ext. Ind. Soc. 5, 8–17.
Çelik, Y., Karayiğit, A.İ., Querol, X., Oskay, R.G., Mastalerz, M., & Özer, M. S.K. (2017). Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yeniköy coal of Late Oligocene age in the Thrace Basin (NW Turkey). Int. J. Coal Geol. 181, 103-123.
Dai, S., Wang, X., Zhou, Y., Hower, J.C., Li, D., Chen, W., & Zhu, X. (2011b). Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology. 282, 29–44.
Dai S, Zhao L, Peng S, Chou C-L, Wang X, Zhang Y, et al. (2010a). Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int J Coal Geol 81(4):320–32.
Dai, S., Ren, D., Chou, C.L., Finkelman, R.B., Seredin, V.V., & Zhou, Y. (2011a). Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol.94, 3-21.
Dai, S., Zou, J., Jiang, Y., Ward, C.R., Wang, X., Li, T., Xue, W., Liu, S., Tian, H., Sun, X., & Zhou, D. (2011c). Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol.
Dai, S., Y. Jiang, C. R. Ward, L. Gu, V. V. Seredin, H. Liu, D. Zhou, X. Wang, Y. Sun, J. Zou, & D. Ren. (2012). “Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield”, Int. J. Coal Geol. 98, 10–40.
Dai, S., Chekryzhov, I.Y., Seredin, V.V., Nechaev, V.P., Graham, I.T., Hower, J.C., Ward, C.R., Ren, D., & Wang, X. (2016a). Metalliferous coal deposits in East Asia (Primorye of Russia and South China): a review of geodynamic controls and styles of mineralization. Gondwana Res., 29, 60–82.
Dai, S., Graham, I.T., & Ward, C.R.(2016b). A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 159, 82–95.
Demir, I., & Kursun, I. (2012). Investigation of radioactive content of Manisa-Soma and Istanbul-Agacli coals (Turkey). Physicochemical Problems of Mineral Processing. 48(2), 341-353.
Dill, H.G. (2001). The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Science Reviews. 53, 35–93.
Erarslan, C., & Örgün, Y. (2017). Mineralogical and geochemical characterization of the Saray and Pınarhisar coals, Northwest Thrace Basin, Turkey. Int. J. Coal Geol. 173, 9-25.
Erarslan, C., Örgün, Y., & Bozkurtoğlu, E. (2014). Geochemistry of trace elements in the Keşan coal and its effect on the physicochemical features of ground-and surface waters in the coal fields, Edirne, Thrace Region, Turkey. Int. J. Coal Geol. 133, 1-12.
Erkoyun, H., Kadir, S., Külah, T., & Huggett, J. (2017). Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitömer coal deposit, Kütahya, western Turkey. Int. J. Coal Geol. 172, 112-133.
Eskenazy, G.M. (1999). Aspects of the geochemistry of rare earth elements in coal: an experimental approach. Int. J. Coal Geol. 38, 285–295.
Eskenazy, G.M. (1995). Geochemistry of rare earth elements in Bulgarian coals. Ann. De L' Univ. de Sofia ‘St. Kl. Ohridski’, Livre -1. 88, 39–65.
Eskenazy, G.M. (1987a). Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org. Geochem.11, 83-89.
Eskenazy, G.M. (1987b). Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. Int. Geol. Rev.,7, 301-314.
European Commission. European Commission. Report on critical raw materials for The EU. May 2014. European Coal Combustion Products Association e.V. Production and utilisation of CCPs in 2008 in Europe; 2008. http://www.ecoba.com/ evjm,media/ccps/Ecoba_Stat_2008_EU15.pdf [accessed 25.10.11].
European Commission. European Commission. Study on the review of the list of critical minerals. 2017. 92 p.
Finkelman, R.B. (1993). Trace and minor elements in coal. In: Org Geochem. vol. 11. Springer, Boston, MA. pp. 593–607. https://doi.org/10.1007/978-1-4615-2890-6_28
Franus, W., Wiatros-Motyka, M.M., Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22, 9464-9474.
Görür, N., & Okay, A.I. (1996). A fore-arc origin for the Thrace Basin. Geol. Rundsch. 85, 662–668.
Gürdal, G. (2011). Abundances and modes of occurrence of trace elements in the Çan coals (Miocene), Çanakkale-Turkey. Int. J. Coal Geol. 87(2): 157-173.
Gürdal, G. (2008). Geochemistry of trace elements in Çan coal (Miocene), Çanakkale, Turkey. Int. J. Coal Geol. 74(1), 28-40.
Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact, Resources. 3, 614-635
Haxel, G.B., Hedrick, J.B., & Orris, G.J. (2014). Rare Earth Elements—Critical Resources for High. Technology, USGS Fact Sheet 087–02. Available online: http://pubs.usgs.gov/fs/2002/fs087-02/ (accessed on 20 October 2014).
Hoş-Çebi, F. H., Korkmaz, S., & Akçay, M. (2009). Trace element geochemistry of Jurassic coals from eastern Black Sea region, NE-Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 31(8), 664-670.
Hower, J.C., Eble, C.F., O’Keefe, J.M.K., Dai, S., Wang, P., Xie, P., Liu, J., Ward, C.R., & French, D. (2015b). Petrology, palynology, and geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian) in eastern Kentucky, USA: Minerals. 5(3): 592–622.
Hower, J.C., Granite, E.J., Mayfield, D.B., Lewis, A.S., & Finkelman, R.B. (2016). Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts: Minerals. 6/32, 9 p.
Hower, JC., Ruppert, LF., & Eble, CF. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int J Coal Geol. 1999, 39(1- 3):141–53.
Huang, Q., Noble, A., Herbst, J., & Honaker, R. (2018). Liberation and release of rare earth minerals from Middle Kittanning, Fire Clay, and West Kentucky no. 13 coal sources. Powder Technol. 332, 242–252. https://doi.org/10.1016/j.powtec.2018.03.063.
Humphries M. (2013). Rare earth elements: The global supply chain. December 16.
IUPAC Technical Reports and Recommendations. 1968. Ottmar Leuchs. The Classifying of High Polymers. 16/ 4, 491-701.
Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K., & Lee, J.Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy,165, 2-26.
Jordens, A., Cheng, Y.P., & Waters, K.E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering. 41, 97-114.
Kalender, L., & Karamazi, K. (2017). A comparison of the Kalburçayırı lignites in the Kangal-Sivas basin and various worldwide coal compositions. Int. Journal of Oil, Gas and Coal Technology, 15(4), 394-424.
Karayigit, A. I., & Celik, Y. (2003). Mineral matter and trace elements in Miocene coals of the Tuncbilek-Domanic basin, Kutahya, Turkey. Energy Source. 25(4): 339-355.
Karayigit, A.I., & Gayer, R.A. (2000). Trace elements in a Pliocene-Pleistocene lignite profile from the Afsin-Elbistan field, Eastern Turkey. Energy Sources. 22(1): 13-21.
Karayigit, A.I., Akgun, F., Gayer, R. A., & Temel, A. (1999). Quality, palynology, and palaeoenvironmental interpretation of the Ilgin lignite, Turkey. Int. J. Coal Geol. 38(3-4), 219-236.
Karayigit, A.I., Gayer, R.A., Ortac, F.E., & Goldsmith, S. (2001). Trace elements in the lower Pliocene fossiliferous Kangal lignites, Sivas, Turkey. Int. J. Coal Geol. 47(2): 73-89.
Karayigit, A.I., Gayer, R.A., Querol, X., & Onacak, T. (2000). Contents of major and trace elements in feed coals from Turkish coal-fired power plants. Int. J. Coal Geol. 44, 169–184.
Karayiğit, A. İ., Littke, R., Querol, X., Jones, T., Oskay, R. G., & Christanis, K. (2017). The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. Int. J. Coal Geol. 173, 110-128.
Karayiğit, A.İ., Oskay, R.G., & Gayer, R.A. (2019). Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey). Turkish Journal of Earth Sciences. 28(3): 438-456.
Ketris M, & Yudovich Y. (2009). Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int J Coal Geol. 78(2):135–48.
Kokowska-Pawłowska M., Hanak B., & Nowak J. (2013). Rare Earth Elements (REEs) in the rocks accompanying selected coal seams of the Mudstone and Sandstone Series of the Upper Silesian Coal Basin. 65nd Meeting of the International Committee for Coal and Organic Petrology (ICCP), Uniwersytet Śląski, Sosnowiec, Abstrakt, 99-100.
Kumar, V., Kumar, A., & Holuszko, M.E. (2018). Occurrence of Rare-Earth Elements in Selected British Columbian Coal Deposits and their Derivative Products, Geoscience BC Report 2018-1.
Lin, R., Bank, T.L., Roth, E.A., Granite, E.J., & Soong, Y. (2017b). Organic and inorganic associations of rare earth elements in central Appalachian coal. Int. J. Coal Geol. 179, 295–301.
Lin, R., Howard, B.H., Roth, E.A., Bank, T.L., Granite, E.J., & Soong, Y. (2017a). Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel, 200, 506–520.
Lin, R., Soong, Y., & Granite, E.J. (2018). Evaluation of trace elements in US coals using the USGS COALQUAL database version 3.0. Part I: rare earth elements and yttrium (REY). Int. J. Coal Geol. 192, 1–13.
Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: focus on international markets and future strategies. Res. Policy. 38, 36–43.
Mohr, S.H., & Evans, G.M. (2009). Forecasting coal production until 2100. Fuel. 88, 2059–2067.
MTA (General Directorate of Mineral Research and Exploration). Türkiye Linyit Envanteri (2010). Lignite Inventory of Turkey). Inventory Series No. 202, MTA Publications, Ankara.
Nifantov, B.F. (2003). Valuable and toxic elements in coals. Coal Resources of Russia, vol. II. Geoinformmark, Moscow, pp. 77–91 (in Russian).
Ozcelik, O., Pehlivanli, B. Y., Sarı, A., Altunsoy, M., Hokerek, S., & Unal, N. (2016). Geochemical characteristics of major and trace elements in Sahinali Coals, Aydin, Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 38(10): 1435-1447.
Özbayoğlu, G. (2010). Potential of removing trace elements from a Turkish lignite. Int. Journal of Coal Preparation and Utilization. 30(6), 322-330.
Palmer, C. A., Tuncalı, E., Dennen, K. O., Coburn, T. C., & Finkelman, R.B. (2004). Characterization of Turkish coals: a nationwide perspective. Int. J. Coal Geol. 60(2-4): 85-115.
Pazand, K. (2015). Concentration and distribution of selenium in Iranian coals. Environmental Nanotechnology, Monitoring & Management. 3, 55-60.
Querol, X., Whateley, M.K.G., Fernandez-Turiel, J.L. & Tuncali, E. (1997). Geological controls on the mineralogy of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 33(3): 255–271.
Saydam Eker, Ç., Akpinar, I., & Sipahi, F. (2016). Organic geochemistry and element distribution in coals formed in Eocene Lagoon facies from the Eastern Black Sea Region, NE Turkey. Turkish Journal of Earth Science. 25(5): 467-489.
Seredin V, Arbuzov S, & Alekseev V. (2006B). Sc-bearing coals from Yakhlinsk deposit, Western Siberia. Doklady Earth Sci. 409 (2):967–72.
Seredin VV, Dai S, Sun Y, & Chekryzhov IY. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl Geochem., 31. 1–11.
Seredin, V.V. (2010). A new method for primary evaluation of the outlook for rare earth element ores. Geology of Ore Deposits, 52, 428–433.
Seredin, V.V., & Dai, S. (2012). Coal deposits as a potential alternative source for lanthanides and yttrium: Int. J. Coal Geol., 94, 67- 93.
Sun, Y., Zhao, C., Qin, S., Xiao, L., Li, Z., & Lin, M. (2016). Occurrence of some valuable elements in the unique ‘high-aluminium coals’ from the Jungar coalfield, China. Ore Geology Reviews, 72, 659-668
Swaine, D.J. (1990). Trace Elements in Coal. Butterworth, London. 278p.
Şengüler, İ. (2010). Lignite explorations in Turkey: new projects and new reserves. 27th Annual International Pittsburgh Coal Conference, October 2010, İstanbul, Turkey.
Taggart, R.K., Hower, J.C., Dwyer, G.S., & Hsu-Kim, H. (2016). Trends in rare earth element content of U.S.- based coal combustion fly ashes: Environmental Science and Technology, 50(11).
Taylor SR, & McLennan SM. (1995). The geochemical evolution of the continental crust. Rev Geophys. 33(2):241–65.
Tozsin, G. Hazardous elements in soil and coal from the Oltu coal mine district, Turkey. Int. J. Coal Geol. 2014, 131, 1-6.
Tuncalı, E., Çiftçi, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., Ayçık, & H., Şahin. (2002).
Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri (Chemical and Technological Properties of Tertiary Lignites of Turkey). MTA Publications. Ankara
U.S. Geological Survey (2018). Mineral Commodity Summaries 2018. U.S. Geological
Survey, Reston, Virginia, pp. 132e133. https://doi.org/10.3133/70194932.
US Department of Energy. 2011. Critical Materials Strategy. https://www.energy.gov/
sites/prod/files/2016/12/f34/2011%20Critical%20Materials%20Strategy%20Report.pdf (accessed 1 April 2019)
US Secretary of the Interior (2018). Final List of Critical Minerals, Federal Register.
https://www.gpo.gov/fdsys/pkg/FR-2018-05-18/pdf/2018-10667.pdf.
Wang, M., Liu, G.J., Sun R.Y., Chou C.L., & Zheng L.G. (2012). Characterization of intrusive rocks and REE geochemistry of coals from the Zhuji Coal Mine, Huainan Coalfield, Anhui, China. Int. J. Coal Geol. 94, 283-295.
Ward, C.R. (1978). Mineral matter in Australian bituminous coals, Australasian Institute of Mining Metallurgy Proceedings. 267, 7-25.
WEC (World Energy Council). 2007. Survey of Energy Resource. http://ny.whlib.ac.cn/pdf/Survey_of_Energy_Resources_2007.pdf (accessed 1 April 2019)
Yalçın Erik, N., (2018). The Coalification Process And Use Of Saturate Biomarker Data In
The Determination Of Paleoenvironmental Features Yeniçubuk- Gemerek Coals (Sivas-Turkey).
WMESS2018, Prague, Czech Rep.
Yalçın Erik, N., (2019). Chemical Composition and Ree Contents in Coals and
Bıtumınous Shales From Divriği- Selimoğlu Coal Field, Sivas-Turkey. WMESS2019, Prague, Czech Rep.
Yalçın Erik, N., & Ay, F., (2018). Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri. Mühendislik ve Yer Bilimleri Dergisi, 3(1), 11-29.
Yalçın Erik, N., & Ay, F., (2020). Use of petrological and organic geochemical data in
determining hydrocarbon generation potential of coals: miocene coals of Malatya Basin (Eastern
Anatolia-Turkey). International Journal of Coal Science Technology, 7(3), https://doi.org/10.1007/s40789-020-00376-3
Zhang, W., & Honaker, R.Q. (2018). Rare earth elements recovery using staged precipitation
from a leachate generated from coarse coal refuse. Int. J. Coal Geol. 195, 189–199.
Zhang, W., Rezaee, M., Bhagavatula, A., Li, Y., Groppo, J., & Honaker, R. A. (2015). Review of the Occurrence and Promising Recovery Methods of Rare Earth Elements from Coal and Coal By-Products, International Journal of Coal Preparation and Utilization. 35:6, 295-330.
Zhao, L., Dai, S., Graham, I.T., Li, X., Liu, H., Song, X., Hower, J.C., & Zhou, Y. (2017).
Cryptic sediment-hosted critical element mineralization from eastern Yunnan
Province, southwestern China: mineralogy, geochemistry, relationship to Emeishan
alkaline magmatism and possible origin. Ore Geol. Rev. 80, 116–140.
Zheng L., Liu G., Chou Ch.L., Qi C., & Zhang Y. (2007). Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China. Journal of Asian Earth Sciences. 31, 167-176.
KRİTİK MİNERALLER İÇİN GELENEKSEL OLMAYAN BİR KAYNAK; DÜŞÜK KALİTELİ BAZI TÜRK KÖMÜRLERİNİN NADİR TOPRAK + Y VE Sc İÇERİĞİ
Year 2022,
Volume: 25 Issue: 2, 155 - 172, 03.06.2022
NTE (Nadir Toprak Elementleri + Y) ve Sc, enerji sektörü ve elektronik gibi yüksek teknoloji gerektiren alanlar için küresel olarak ihtiyaç duyulan stratejik malzemelerdir. Kömürler, bileşimlerinde birçok eser element ile birlikte Nadir Toprak Elementleri içerir. Son yıllarda, NTE'nin küresel talep ve arzı arasındaki uçurum arttıkça, özellikle bu malzemelerin ithalatına büyük ölçüde bağımlı olan ülkeler için alternatif kaynak arayışları giderek daha önemli hale gelmiştir. Özellikle atık madde olarak değerlendirilen kömür ve kömür külü, NTE dahil birçok element için olası bir kaynak olarak kabul edilmektedir. Bu çalışmada incelenen Türk düşük dereceli kömürleri (kuru tam kömür bazında) ortalama 73,73 ppm kritik mineral bolluğuna sahiptir. Türkiye'deki çeşitli Neojen kömür yataklarından toplanan materyallerin, diğer örneklere göre nispeten daha yüksek miktarda NTE (>100 ppm) içerdiği bulunmuştur, bu durum, kömür damarlarının ilişkili sedimanter birimlerin volkaniklastik özelliğine atfedilebilir. Bu çalışmada incelenen kömürlerin kritik mineral içerikleri Türk, Dünya, ABD ve Çin kömürlerine göre daha yüksek olmasına rağmen üretim açısından ekonomik olmadığı ve üretim tekniklerinin geliştirilmesi ile dikkate alınabileceği tespit edilmiştir.
Adamczyk, Z., Białecka, B., Całus-Moszko, J., Komorek, J., & Lewandowska, M. (2015). Rare earth elements of orzeskie beds of south-west part Upper Silesian Coal Basin (Poland). Arch. Min. Sci., 60 (14); 157-172.
Alonso, E., Sherman, A.M., Wallington, T.J., Everson, M.P., Field, F.R., Roth, R., & Kirchain, R.E. (2012). Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ. Sci. Technol., 46 (6): 3406-3414.
Altunsoy, M., Ozcelik, O., Ozdogan, M., & Güllüdağ, C.B. (2015). Major and Trace Element Contents in Coaly Units of the Pliocene Dursunlu Formation. Procedia Earth and Planetary Science. 15, 774-780.
Altunsoy, M., Özçelik, O., & Güllüdağ, C.B. (2017). Comparision of Major and Trace Element Enrichments of Pliocene Coal Fields from Karapınar and Ilgın (Konya) Basins (Turkey), Journal of Scientific and Engineering Research. 4, 269-275.
Altunsoy, M., Sarı, A., Özçelik, O., Engin, H., & Hökerek, S. (2016). Major and trace-element enrichments in the Karapınar coals (Konya, Turkey). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects., 38(1): 88-99.
Arbuzov, S.I., & Ershov, V.V. (2007). Geochemistry of Rare Elements in Coals of Siberia. DPrint, Tomsk, pp. 468.
Arbuzov, S.I., Ershov, V.V., Potseluev, A.A., & Rikhvanov, L.P. (2000). Rare Elements in Coals of the Kuznetsk Basin. Kemerovo. 248pp. (in Russian).
Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geoscience Frontiers. 10, 1285-1303.
Barka, A.A., Sakınç, M., Görür, N., Yılmaz, Y., Şengör, A.M.C., & Ediger, V.Ş. (1994). Is Aegean extension a consequence of the westerly escape of Turkey? American Geophysical Union (ASU) Spring Meeting, Baltimore, U.S.A. Abstracts, 75(16): 116–117.
Birk, D., & White, J.C. (1991). Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: element sites, distribution, mineralogy. Int. J. Coal Geol. 19, 219–251.
Całus-Moszko J., & Białecka B. (2013). Analiza możliwości pozyskania pierwiastków ziem rzadkich z węgli kamiennych i popiołów lotnych z elektrowni. Gospodarka Surowcami Mineralnymi – Mineral Resources Management. 29 (1): 67-80.
Cicioğlu Sutcu, E., & Karayigit, A.I. (2015). Mineral matter, major and trace element content of the Afşin–Elbistan coals, Kahramanmaraş, Turkey. Int. J. Coal Geol. 144, 111-129.
Cox, C., & Kynicky, J. (2018). The rapid evolution of speculative investment in the REE market before, during, and after the rare earth crisis of 2010–2012. Ext. Ind. Soc. 5, 8–17.
Çelik, Y., Karayiğit, A.İ., Querol, X., Oskay, R.G., Mastalerz, M., & Özer, M. S.K. (2017). Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yeniköy coal of Late Oligocene age in the Thrace Basin (NW Turkey). Int. J. Coal Geol. 181, 103-123.
Dai, S., Wang, X., Zhou, Y., Hower, J.C., Li, D., Chen, W., & Zhu, X. (2011b). Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology. 282, 29–44.
Dai S, Zhao L, Peng S, Chou C-L, Wang X, Zhang Y, et al. (2010a). Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int J Coal Geol 81(4):320–32.
Dai, S., Ren, D., Chou, C.L., Finkelman, R.B., Seredin, V.V., & Zhou, Y. (2011a). Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol.94, 3-21.
Dai, S., Zou, J., Jiang, Y., Ward, C.R., Wang, X., Li, T., Xue, W., Liu, S., Tian, H., Sun, X., & Zhou, D. (2011c). Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol.
Dai, S., Y. Jiang, C. R. Ward, L. Gu, V. V. Seredin, H. Liu, D. Zhou, X. Wang, Y. Sun, J. Zou, & D. Ren. (2012). “Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield”, Int. J. Coal Geol. 98, 10–40.
Dai, S., Chekryzhov, I.Y., Seredin, V.V., Nechaev, V.P., Graham, I.T., Hower, J.C., Ward, C.R., Ren, D., & Wang, X. (2016a). Metalliferous coal deposits in East Asia (Primorye of Russia and South China): a review of geodynamic controls and styles of mineralization. Gondwana Res., 29, 60–82.
Dai, S., Graham, I.T., & Ward, C.R.(2016b). A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 159, 82–95.
Demir, I., & Kursun, I. (2012). Investigation of radioactive content of Manisa-Soma and Istanbul-Agacli coals (Turkey). Physicochemical Problems of Mineral Processing. 48(2), 341-353.
Dill, H.G. (2001). The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Science Reviews. 53, 35–93.
Erarslan, C., & Örgün, Y. (2017). Mineralogical and geochemical characterization of the Saray and Pınarhisar coals, Northwest Thrace Basin, Turkey. Int. J. Coal Geol. 173, 9-25.
Erarslan, C., Örgün, Y., & Bozkurtoğlu, E. (2014). Geochemistry of trace elements in the Keşan coal and its effect on the physicochemical features of ground-and surface waters in the coal fields, Edirne, Thrace Region, Turkey. Int. J. Coal Geol. 133, 1-12.
Erkoyun, H., Kadir, S., Külah, T., & Huggett, J. (2017). Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitömer coal deposit, Kütahya, western Turkey. Int. J. Coal Geol. 172, 112-133.
Eskenazy, G.M. (1999). Aspects of the geochemistry of rare earth elements in coal: an experimental approach. Int. J. Coal Geol. 38, 285–295.
Eskenazy, G.M. (1995). Geochemistry of rare earth elements in Bulgarian coals. Ann. De L' Univ. de Sofia ‘St. Kl. Ohridski’, Livre -1. 88, 39–65.
Eskenazy, G.M. (1987a). Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org. Geochem.11, 83-89.
Eskenazy, G.M. (1987b). Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. Int. Geol. Rev.,7, 301-314.
European Commission. European Commission. Report on critical raw materials for The EU. May 2014. European Coal Combustion Products Association e.V. Production and utilisation of CCPs in 2008 in Europe; 2008. http://www.ecoba.com/ evjm,media/ccps/Ecoba_Stat_2008_EU15.pdf [accessed 25.10.11].
European Commission. European Commission. Study on the review of the list of critical minerals. 2017. 92 p.
Finkelman, R.B. (1993). Trace and minor elements in coal. In: Org Geochem. vol. 11. Springer, Boston, MA. pp. 593–607. https://doi.org/10.1007/978-1-4615-2890-6_28
Franus, W., Wiatros-Motyka, M.M., Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22, 9464-9474.
Görür, N., & Okay, A.I. (1996). A fore-arc origin for the Thrace Basin. Geol. Rundsch. 85, 662–668.
Gürdal, G. (2011). Abundances and modes of occurrence of trace elements in the Çan coals (Miocene), Çanakkale-Turkey. Int. J. Coal Geol. 87(2): 157-173.
Gürdal, G. (2008). Geochemistry of trace elements in Çan coal (Miocene), Çanakkale, Turkey. Int. J. Coal Geol. 74(1), 28-40.
Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact, Resources. 3, 614-635
Haxel, G.B., Hedrick, J.B., & Orris, G.J. (2014). Rare Earth Elements—Critical Resources for High. Technology, USGS Fact Sheet 087–02. Available online: http://pubs.usgs.gov/fs/2002/fs087-02/ (accessed on 20 October 2014).
Hoş-Çebi, F. H., Korkmaz, S., & Akçay, M. (2009). Trace element geochemistry of Jurassic coals from eastern Black Sea region, NE-Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 31(8), 664-670.
Hower, J.C., Eble, C.F., O’Keefe, J.M.K., Dai, S., Wang, P., Xie, P., Liu, J., Ward, C.R., & French, D. (2015b). Petrology, palynology, and geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian) in eastern Kentucky, USA: Minerals. 5(3): 592–622.
Hower, J.C., Granite, E.J., Mayfield, D.B., Lewis, A.S., & Finkelman, R.B. (2016). Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts: Minerals. 6/32, 9 p.
Hower, JC., Ruppert, LF., & Eble, CF. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int J Coal Geol. 1999, 39(1- 3):141–53.
Huang, Q., Noble, A., Herbst, J., & Honaker, R. (2018). Liberation and release of rare earth minerals from Middle Kittanning, Fire Clay, and West Kentucky no. 13 coal sources. Powder Technol. 332, 242–252. https://doi.org/10.1016/j.powtec.2018.03.063.
Humphries M. (2013). Rare earth elements: The global supply chain. December 16.
IUPAC Technical Reports and Recommendations. 1968. Ottmar Leuchs. The Classifying of High Polymers. 16/ 4, 491-701.
Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K., & Lee, J.Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy,165, 2-26.
Jordens, A., Cheng, Y.P., & Waters, K.E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering. 41, 97-114.
Kalender, L., & Karamazi, K. (2017). A comparison of the Kalburçayırı lignites in the Kangal-Sivas basin and various worldwide coal compositions. Int. Journal of Oil, Gas and Coal Technology, 15(4), 394-424.
Karayigit, A. I., & Celik, Y. (2003). Mineral matter and trace elements in Miocene coals of the Tuncbilek-Domanic basin, Kutahya, Turkey. Energy Source. 25(4): 339-355.
Karayigit, A.I., & Gayer, R.A. (2000). Trace elements in a Pliocene-Pleistocene lignite profile from the Afsin-Elbistan field, Eastern Turkey. Energy Sources. 22(1): 13-21.
Karayigit, A.I., Akgun, F., Gayer, R. A., & Temel, A. (1999). Quality, palynology, and palaeoenvironmental interpretation of the Ilgin lignite, Turkey. Int. J. Coal Geol. 38(3-4), 219-236.
Karayigit, A.I., Gayer, R.A., Ortac, F.E., & Goldsmith, S. (2001). Trace elements in the lower Pliocene fossiliferous Kangal lignites, Sivas, Turkey. Int. J. Coal Geol. 47(2): 73-89.
Karayigit, A.I., Gayer, R.A., Querol, X., & Onacak, T. (2000). Contents of major and trace elements in feed coals from Turkish coal-fired power plants. Int. J. Coal Geol. 44, 169–184.
Karayiğit, A. İ., Littke, R., Querol, X., Jones, T., Oskay, R. G., & Christanis, K. (2017). The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. Int. J. Coal Geol. 173, 110-128.
Karayiğit, A.İ., Oskay, R.G., & Gayer, R.A. (2019). Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey). Turkish Journal of Earth Sciences. 28(3): 438-456.
Ketris M, & Yudovich Y. (2009). Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int J Coal Geol. 78(2):135–48.
Kokowska-Pawłowska M., Hanak B., & Nowak J. (2013). Rare Earth Elements (REEs) in the rocks accompanying selected coal seams of the Mudstone and Sandstone Series of the Upper Silesian Coal Basin. 65nd Meeting of the International Committee for Coal and Organic Petrology (ICCP), Uniwersytet Śląski, Sosnowiec, Abstrakt, 99-100.
Kumar, V., Kumar, A., & Holuszko, M.E. (2018). Occurrence of Rare-Earth Elements in Selected British Columbian Coal Deposits and their Derivative Products, Geoscience BC Report 2018-1.
Lin, R., Bank, T.L., Roth, E.A., Granite, E.J., & Soong, Y. (2017b). Organic and inorganic associations of rare earth elements in central Appalachian coal. Int. J. Coal Geol. 179, 295–301.
Lin, R., Howard, B.H., Roth, E.A., Bank, T.L., Granite, E.J., & Soong, Y. (2017a). Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel, 200, 506–520.
Lin, R., Soong, Y., & Granite, E.J. (2018). Evaluation of trace elements in US coals using the USGS COALQUAL database version 3.0. Part I: rare earth elements and yttrium (REY). Int. J. Coal Geol. 192, 1–13.
Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: focus on international markets and future strategies. Res. Policy. 38, 36–43.
Mohr, S.H., & Evans, G.M. (2009). Forecasting coal production until 2100. Fuel. 88, 2059–2067.
MTA (General Directorate of Mineral Research and Exploration). Türkiye Linyit Envanteri (2010). Lignite Inventory of Turkey). Inventory Series No. 202, MTA Publications, Ankara.
Nifantov, B.F. (2003). Valuable and toxic elements in coals. Coal Resources of Russia, vol. II. Geoinformmark, Moscow, pp. 77–91 (in Russian).
Ozcelik, O., Pehlivanli, B. Y., Sarı, A., Altunsoy, M., Hokerek, S., & Unal, N. (2016). Geochemical characteristics of major and trace elements in Sahinali Coals, Aydin, Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 38(10): 1435-1447.
Özbayoğlu, G. (2010). Potential of removing trace elements from a Turkish lignite. Int. Journal of Coal Preparation and Utilization. 30(6), 322-330.
Palmer, C. A., Tuncalı, E., Dennen, K. O., Coburn, T. C., & Finkelman, R.B. (2004). Characterization of Turkish coals: a nationwide perspective. Int. J. Coal Geol. 60(2-4): 85-115.
Pazand, K. (2015). Concentration and distribution of selenium in Iranian coals. Environmental Nanotechnology, Monitoring & Management. 3, 55-60.
Querol, X., Whateley, M.K.G., Fernandez-Turiel, J.L. & Tuncali, E. (1997). Geological controls on the mineralogy of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 33(3): 255–271.
Saydam Eker, Ç., Akpinar, I., & Sipahi, F. (2016). Organic geochemistry and element distribution in coals formed in Eocene Lagoon facies from the Eastern Black Sea Region, NE Turkey. Turkish Journal of Earth Science. 25(5): 467-489.
Seredin V, Arbuzov S, & Alekseev V. (2006B). Sc-bearing coals from Yakhlinsk deposit, Western Siberia. Doklady Earth Sci. 409 (2):967–72.
Seredin VV, Dai S, Sun Y, & Chekryzhov IY. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl Geochem., 31. 1–11.
Seredin, V.V. (2010). A new method for primary evaluation of the outlook for rare earth element ores. Geology of Ore Deposits, 52, 428–433.
Seredin, V.V., & Dai, S. (2012). Coal deposits as a potential alternative source for lanthanides and yttrium: Int. J. Coal Geol., 94, 67- 93.
Sun, Y., Zhao, C., Qin, S., Xiao, L., Li, Z., & Lin, M. (2016). Occurrence of some valuable elements in the unique ‘high-aluminium coals’ from the Jungar coalfield, China. Ore Geology Reviews, 72, 659-668
Swaine, D.J. (1990). Trace Elements in Coal. Butterworth, London. 278p.
Şengüler, İ. (2010). Lignite explorations in Turkey: new projects and new reserves. 27th Annual International Pittsburgh Coal Conference, October 2010, İstanbul, Turkey.
Taggart, R.K., Hower, J.C., Dwyer, G.S., & Hsu-Kim, H. (2016). Trends in rare earth element content of U.S.- based coal combustion fly ashes: Environmental Science and Technology, 50(11).
Taylor SR, & McLennan SM. (1995). The geochemical evolution of the continental crust. Rev Geophys. 33(2):241–65.
Tozsin, G. Hazardous elements in soil and coal from the Oltu coal mine district, Turkey. Int. J. Coal Geol. 2014, 131, 1-6.
Tuncalı, E., Çiftçi, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., Ayçık, & H., Şahin. (2002).
Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri (Chemical and Technological Properties of Tertiary Lignites of Turkey). MTA Publications. Ankara
U.S. Geological Survey (2018). Mineral Commodity Summaries 2018. U.S. Geological
Survey, Reston, Virginia, pp. 132e133. https://doi.org/10.3133/70194932.
US Department of Energy. 2011. Critical Materials Strategy. https://www.energy.gov/
sites/prod/files/2016/12/f34/2011%20Critical%20Materials%20Strategy%20Report.pdf (accessed 1 April 2019)
US Secretary of the Interior (2018). Final List of Critical Minerals, Federal Register.
https://www.gpo.gov/fdsys/pkg/FR-2018-05-18/pdf/2018-10667.pdf.
Wang, M., Liu, G.J., Sun R.Y., Chou C.L., & Zheng L.G. (2012). Characterization of intrusive rocks and REE geochemistry of coals from the Zhuji Coal Mine, Huainan Coalfield, Anhui, China. Int. J. Coal Geol. 94, 283-295.
Ward, C.R. (1978). Mineral matter in Australian bituminous coals, Australasian Institute of Mining Metallurgy Proceedings. 267, 7-25.
WEC (World Energy Council). 2007. Survey of Energy Resource. http://ny.whlib.ac.cn/pdf/Survey_of_Energy_Resources_2007.pdf (accessed 1 April 2019)
Yalçın Erik, N., (2018). The Coalification Process And Use Of Saturate Biomarker Data In
The Determination Of Paleoenvironmental Features Yeniçubuk- Gemerek Coals (Sivas-Turkey).
WMESS2018, Prague, Czech Rep.
Yalçın Erik, N., (2019). Chemical Composition and Ree Contents in Coals and
Bıtumınous Shales From Divriği- Selimoğlu Coal Field, Sivas-Turkey. WMESS2019, Prague, Czech Rep.
Yalçın Erik, N., & Ay, F., (2018). Çilhoroz (Çayırlı-Erzincan) Kömürlerinin Paleo-Çökelim Ortamı ve Kömürleşme Süreci Özellikleri. Mühendislik ve Yer Bilimleri Dergisi, 3(1), 11-29.
Yalçın Erik, N., & Ay, F., (2020). Use of petrological and organic geochemical data in
determining hydrocarbon generation potential of coals: miocene coals of Malatya Basin (Eastern
Anatolia-Turkey). International Journal of Coal Science Technology, 7(3), https://doi.org/10.1007/s40789-020-00376-3
Zhang, W., & Honaker, R.Q. (2018). Rare earth elements recovery using staged precipitation
from a leachate generated from coarse coal refuse. Int. J. Coal Geol. 195, 189–199.
Zhang, W., Rezaee, M., Bhagavatula, A., Li, Y., Groppo, J., & Honaker, R. A. (2015). Review of the Occurrence and Promising Recovery Methods of Rare Earth Elements from Coal and Coal By-Products, International Journal of Coal Preparation and Utilization. 35:6, 295-330.
Zhao, L., Dai, S., Graham, I.T., Li, X., Liu, H., Song, X., Hower, J.C., & Zhou, Y. (2017).
Cryptic sediment-hosted critical element mineralization from eastern Yunnan
Province, southwestern China: mineralogy, geochemistry, relationship to Emeishan
alkaline magmatism and possible origin. Ore Geol. Rev. 80, 116–140.
Zheng L., Liu G., Chou Ch.L., Qi C., & Zhang Y. (2007). Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China. Journal of Asian Earth Sciences. 31, 167-176.
Erik, N. (2022). A NON-TRADITIONAL RESOURCE FOR CRITICAL MINERALS; RARE EARTHS (REY+Sc) CONTENTS OF SOME TURKISH LOW RANK COALS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(2), 155-172. https://doi.org/10.17780/ksujes.954292