Review
BibTex RIS Cite

INVESTIGATION OF FIRE PERFORMANCE OF CONCRETE FILLED STEEL TUBE COLUMNS

Year 2023, Volume: 26 Issue: 1, 289 - 294, 15.03.2023
https://doi.org/10.17780/ksujes.1183702

Abstract

In concrete filled steel tube (CFST) columns, while steel confines the concrete and increases the compressive strength, concrete delays the local buckling of the steel. With this study, it is aimed to compile the latest developments related to the factors affecting fire resistance of CFST columns and bring them to the literature. According to infill types, high fire resistance is obtained from steel bar reinforced, steel fiber reinforced and plain CFST columns, respectively, and circular, elliptical, square and rectangular columns according to section type. The fire resistance increases with the increase of the column cross-sectional area. While the increase in the strength of the steel tube leads to a decrease in the fire resistance, it is understood that the thickness of the steel tube does not have a significant effect. In some studies, it is reported that the fire resistance increases with the increase of concrete strength, while in others it decreases. In addition, it is among the findings obtained that the CFST columns produced with concrete containing carbonated aggregate provide higher fire resistance than those with silica. The fire resistance of CFST columns is highly affected by the applied load level and eccentricity and is inversely proportional to both.

References

  • Alhatmey, I. A. H. (2020). Residual Strength Capacity of Fire-Exposed Concrete Filled Steel Tube Columns. Doctoral Thesis. Gaziantep University, Institute of Natural and Applied Science, Gaziantep.
  • Aribert, J.M., Renaud, C., & Zhao, B. (2008). Simplified Fire Design for Composite Hollow-Section Columns. In Proceedings of the Institution of Civil Engineers - Structures and Buildings. (161(6), pp. 325-336).
  • CEN (2005). BS EN 1994-1-2, Eurocode 4 Design of Composite Steel and Concrete Structures Part 1-2: General Rules-Structural Fire Design. Brussels, Belgium.
  • Chung, K., Park, S., & Choi, S. (2008). Material Effect for Predicting the Fire Resistance of Concrete-Filled Square Steel Tube Column Under Constant Axial Load. Journal of Constructional Steel Research, 64 (12), 1505–1515. https://doi.org/10.1016/j.jcsr.2008.01.002
  • Dai, X. H., & Lam, D. (2012). Shape Effect on the Behaviour of Axially Loaded Concrete Filled Steel Tubular Stub Columns at Elevated Temperature. Journal of Constructional Steel Research, 73, 117-127. https://doi.org/10.1016/j.jcsr.2012.02.002
  • Ekmekyapar, T., & Alhatmey, I. A. H. (2019). Post-Fire Resistance of Internally Ring Stiffened High Performance Concrete Filled Steel Tube Columns. Engineering Structures, 183, 375-388. https://doi.org/10.1016/j.engstruct.2019.01.024
  • Espinos, A., Romero, M. L., Serra, E., Hospitaler, A. (2015). Circular and Square Slender Concrete-Filled Tubular Columns Under Large Eccentricities and Fire. Journal of Constructional Steel Research, 110, 90-100. https://doi.org/10.1016/j.jcsr.2015.03.011
  • Espinos, A., Romero, M. L., & Hospitaler, A. (2012). Simple Calculation Model for Evaluating the Fire Resistance of Unreinforced Concrete Filled Tubular Columns. Engineering Structures, 42, 231-244. https://doi.org/10.1016/j.engstruct.2012.04.022
  • Etli, S. (2021). Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences, 7(3), 526-536. https://doi.org/ 10.29132/ijpas.991166
  • Etli, S., & Güneyisi, E. M. (2022a). Effect of Using Eccentric Braces with Different Link Lengths on the Seismic Demand of CFST Column‑Composite Beam Frames Subjected to Near‑Field and Far‑Field Earthquakes. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-022-00994-8
  • Etli, S., & Güneyisi, E. M. (2022b). Effect of nonlinear modeling approaches used for composite elements on seismic behavior of composite framed buildings. Sadhana, 47, 91. https://doi.org/10.1007/s12046-022-01871-w
  • Güneyisi, E. M., Gültekin, A., & Mermerdaş, K. (2016). Ultimate Capacity Prediction of Axially Loaded CFST Short Columns. International Journal of Steel Structures, 16 (1), 99-114. https://doi.org/10.1007/s13296-016-3009-9
  • Han, L. H., Chen, F., Liao, F. Y., Tao. Z., & Uy, B. (2013). Fire Performance of Concrete Filled Stainless Steel Tubular Columns. Engineering Structures, 56, 165-181. https://doi.org/10.1016/j.engstruct.2013.05.005
  • ISO 834 (1975). Fire-Resistance Tests-Elements of Building Construction, International Standard ISO 834, Geneva.
  • İpek, S., Güneyisi, E. M., Mermerdaş, K., & Algın, Z. (2021). Optimization and Modeling of Axial Strength of Concrete-Filled Double Skin Steel Tubular Columns Using Response Surface and Neural-Network Methods. Journal of Building Engineering, 43, 103128. https://doi.org/10.1016/j.jobe.2021.103128
  • İpek, S., & Güneyisi, E. M. (2020). Nonlinear Finite Element Analysis of Double Skin Composite Columns Subjected to Axial Loading. Archives of Civil and Mechanical Engineering, 20 (1), 1-25. https://doi.org/10.1007/s43452-020-0012-x
  • İpek, S., & Güneyisi, E. M. (2019). Ultimate Axial Strength of Concrete-Filled Double Skin Steel Tubular Column Sections. Advances in Civil Engineering, 219 (11), 1-19. 6493037. https://doi.org/10.1155/2019/6493037
  • Kalemi, B. (2016). Numerical Modeling and Assessment of Circular Concrete-Filled Steel Tubular Members. Master in Science Thesis, Istituto Universitario di Studi Superiori di Pavia.
  • Kodur, V. K. R. (2007). Guidelines for Fire Resistant Design of Concrete-Filled Steel HSS Columns - State-of-the-Art and Research Needs. Steel Structures, 7, 173-182.
  • Kodur, V. K. R. (1999). Performance-Based Fire Resistance Design of Concrete-Filled Steel Columns. Journal of Constructional Steel Research, 51 (1), 21-36. https://doi.org/10.1016/S0143-974X(99)00003-6
  • Kodur, V. K. R. (1998). Design Equations for Evaluating Fire Resistance of SFRC-Filled HSS Columns. Journal of Structural Engineering, 124 (6), 671-677. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(671)
  • Kodur, V. K. R., & Lie, T. T. (1995). Experimental Studies on the Fire Resistance of Circular Hollow Steel Columns Filled with Steel-Fibre-Reinforced Concrete (Internal Report No. 691). Canada: NRC-IRC.
  • Lennon, T., Moore, D.B., Wang, Y.C. & Bailey, C.G. (2007). Designers’ Guides to the Eurocodes. London: Thomas Telford Publishing.
  • Leskela, M. V. (2009). Inconsistencies in the Fire Design Rules of Composite Columns to EN 1994-1-2. Steel Concrete Composite and Hybrid Structures, 489-494. Leeds, England.
  • Lie, T. T., & Chabot, M. (1992). Experimental Studies on the Fire Resistance of Hollow Steel Columns Filled with Plain Concrete (Internal Report No. 611). Canada: NRC-IRC.
  • Lie, T. T., & Caron, S. E. (1988). Fire Resistance of Circular Hollow Steel Columns Filled with Siliceous Aggregate Concrete. (Test Results, Internal Report No. 570). Canada: NRC-IRC.
  • Lu, H., Zhao, X. L., & Han, L. H. (2009). Fire Behaviour of High Strength Self-Consolidating Concrete Filled Steel Tubular Stub Columns. Journal of Constructional Steel Research, 65, 1995-2010. https://doi.org/10.1016/j.jcsr.2009.06.013
  • Mao, W. J., Wang, W. D., & Xian, W. (2020). Numerical Analysis on Fire Performance of Steel-Reinforced Concrete-Filled Steel Tubular Columns with Square Cross-Section. Structures, 28, 1-16. https://doi.org/10.1016/j.istruc.2020.08.043
  • Moliner, V., Espinos, A., Romero, M.L., & Hospitaler, A. (2013). Fire Behavior of Eccentrically Loaded Slender High Strength Concrete-Filled Tubular Columns. Journal of Constructional Steel Research, 83, 137–146. https://doi.org/10.1016/j.jcsr.2013.01.011
  • Ribeiro, J. C. L., Fakury R. H., & de Las Casas, E. B. (2008). Eurocode Structural Fire Design and its Application for Composite Circular Hollow Section Columns. Journal of the Brazilian Society of Mechanical Science and Engineering, 30 (1), 39-46. https://doi.org/10.1590/S1678-58782008000100006
  • Rodrigues, J. P. C., & Laim, L. (2017). Fire Resistance of Restrained Composite Columns Made of Concrete Filled Hollow Sections. Journal of Constructional Steel Research, 133, 65-76. https://doi.org/10.1016/j.jcsr.2017.02.011
  • Romero, M. L., Moliner, V., Espinos, A., Ibanez, C., Hospitaler, A. (2011). Fire Behavior of Axially Loaded Slender High Strength Concrete-Filled Tubular Columns. Journal of Constructional Steel Research, 67, 1953-1965. https://doi.org/10.1016/j.jcsr.2011.06.012
  • Rush, D., Bisby, L., Jowsey, A., Melandinos, A., & Lane, B. (2012). Structural Performance of Unprotected Concrete-Filled Steel Hollow Sections in Fire: A Review and Meta-Analysis of Available Test Data. Steel and Composite Structures, 12 (4), 325–350. https://doi.org/10.12989/scs.2012.12.4.325
  • Sancıoğlu, S., İlgün, A., Çarbaş, S., & Akın, K. (2019). Beton Dolgulu Çelik Kirişlerin Eğilme Etkisinin Analitik Olarak İncelenmesi. 8. Uluslararası Çelik Yapılar Sempozyumu (pp. 416-421).
  • Sancıoğlu, S. (2020). Beton Dolgulu Çelik Kirişlerin Eğilme Etkisinin Deneysel ve Analitik Olarak İncelenmesi. Yüksek Lisans Tezi. KTO Karatay Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya.
  • Tao, Z. Ghannam, M., Song, T.Y., & Han, L. H. (2016). Experimental and Numerical Investigation of Concrete-Filled Stainless Steel Columns Exposed to Fire. Journal of Constructional Steel Research, 118, 120–134. https://doi.org/10.1016/j.jcsr.2015.11.003
  • Tondini, N., Hoang, V.L., Demonceau, J.F., & Franssen, J. M. (2013). Experimental and Numerical Investigation of High-Strength Steel Circular Columns Subjected to Fire. Journal of Constructional Steel Research, 80, 57–81. https://doi.org/10.1016/j.jcsr.2012.09.001
  • Ukanwa, K. U., Lim, J. B. P., Sharma, U. K., Hicks, S. J., Abu, A., & Clifton, G. C. (2017). Behaviour of Continuous Concrete Filled Steel Tubular Columns Loaded Eccentrically in Fire. Journal of Constructional Steel Research, 139, 280–287. https://doi.org/10.1016/j.jcsr.2017.09.030
  • Wang J. H., He, J., & Xiao, Y. (2019). Fire Behavior and Performance of Concrete-Filled Steel Tubular Columns: Review and Discussion. Journal of Constructional Steel Research, 157, 19–31. https://doi.org/10.1016/j.jcsr.2019.02.012
  • Wang K., & Young, B. (2013). Fire Resistance of Concrete-Filled High Strength Steel Tubular Columns. Thin-Walled Structures, 71, 46–56. https://doi.org/10.1016/j.tws.2013.05.005
  • Wang, Y.C., & Orton, A. (2008). Fire Resistant Design of Concrete Filled Tubular Steel Columns. The Structural Engineer, 86 (19), 40-45.
  • Wang, Y. C. (2000). A Simple Method for Calculating the Fire Resistance of Concrete-Filled CHS Columns. Journal of Constructional Steel Research, 54 (3), 365-386. https://doi.org/10.1016/S0143-974X(99)00061-9
  • Wang ,Y. C. (1997). Some Considerations in the Design of Unprotected Concrete-Filled Steel Tubular Columns Under Fire Conditions. Journal of Constructional Steel Research, 44 (3), 203-223. https://doi.org/10.1016/S0143-974X(97)00060-6
  • Xiong, M. X., & Liew, J. Y. R. (2021). Fire Resistance of High-Strength Steel Tubes Infilled with Ultra-High-Strength Concrete Under Compression. Journal of Constructional Steel Research, 176, 106410. https://doi.org/10.1016/j.jcsr.2020.106410
  • Yao, Y., Li, H., Guo, H., & Tan, K. (2016). Fire Resistance of Eccentrically Loaded Slender Concrete Filled Steel Tubular Columns. Thin-Walled Structures, 106, 102–112. https://doi.org/10.1016/j.tws.2016.04.025
  • Yin, J., Zha, X. X., & Li, L.Y. (2006). Fire Resistance of Axially Loaded Concrete Filled Steel Tube Columns. Journal of Constructional Steel Research, 62, 723–729. https://doi.org/10.1016/j.jcsr.2005.11.011

Beton dolgulu çelik tüp kolonların yangın performansının araştırılması

Year 2023, Volume: 26 Issue: 1, 289 - 294, 15.03.2023
https://doi.org/10.17780/ksujes.1183702

Abstract

Beton dolgulu çelik tüp (BDÇT) kolonlarda, çelik betonu sararak basınç dayanımını arttırırken beton çeliğin yerel burkulmasını geciktirir. Bu çalışma ile BDÇT kolonların yangın direncini etkileyen faktörleri kapsayan çalışmalar ile ilgili son gelişmeleri derleyip literatüre kazandırmak amaçlanmıştır. Dolgu türlerine göre yüksek yangın direnci sırasıyla donatılı beton, çelik lifli beton ve yalın beton dolgulu çelik tüp kolonlardan, kesit tipine göre sırasıyla dairesel, eliptik, kare ve dikdörtgen kesitli kolonlardan elde edilmektedir. Kolon kesit alanının büyümesi ile yangın direnci artmaktadır. Çelik tüpün dayanımının artması, yangın direncinin azalmasına yol açarken, çelik tüp kalınlığının önemli etkisinin olmadığı anlaşılmaktadır. Bazı çalışmalarda beton dayanımın artmasıyla yangın direncinin arttığı, bazılarında ise azaldığı bildirilmektedir. Ayrıca, karbonatlı agrega içeren beton ile üretilen BDÇT kolonlar silikalı olanlara göre daha yüksek yangın direnci sağladığı elde edilen bulgular arasındadır. BDÇT kolonların yangın direnci uygulanan yük seviyesi ve eksantrisiteden oldukça etkilenmektedir ve her ikisi ile ters orantılıdır.

References

  • Alhatmey, I. A. H. (2020). Residual Strength Capacity of Fire-Exposed Concrete Filled Steel Tube Columns. Doctoral Thesis. Gaziantep University, Institute of Natural and Applied Science, Gaziantep.
  • Aribert, J.M., Renaud, C., & Zhao, B. (2008). Simplified Fire Design for Composite Hollow-Section Columns. In Proceedings of the Institution of Civil Engineers - Structures and Buildings. (161(6), pp. 325-336).
  • CEN (2005). BS EN 1994-1-2, Eurocode 4 Design of Composite Steel and Concrete Structures Part 1-2: General Rules-Structural Fire Design. Brussels, Belgium.
  • Chung, K., Park, S., & Choi, S. (2008). Material Effect for Predicting the Fire Resistance of Concrete-Filled Square Steel Tube Column Under Constant Axial Load. Journal of Constructional Steel Research, 64 (12), 1505–1515. https://doi.org/10.1016/j.jcsr.2008.01.002
  • Dai, X. H., & Lam, D. (2012). Shape Effect on the Behaviour of Axially Loaded Concrete Filled Steel Tubular Stub Columns at Elevated Temperature. Journal of Constructional Steel Research, 73, 117-127. https://doi.org/10.1016/j.jcsr.2012.02.002
  • Ekmekyapar, T., & Alhatmey, I. A. H. (2019). Post-Fire Resistance of Internally Ring Stiffened High Performance Concrete Filled Steel Tube Columns. Engineering Structures, 183, 375-388. https://doi.org/10.1016/j.engstruct.2019.01.024
  • Espinos, A., Romero, M. L., Serra, E., Hospitaler, A. (2015). Circular and Square Slender Concrete-Filled Tubular Columns Under Large Eccentricities and Fire. Journal of Constructional Steel Research, 110, 90-100. https://doi.org/10.1016/j.jcsr.2015.03.011
  • Espinos, A., Romero, M. L., & Hospitaler, A. (2012). Simple Calculation Model for Evaluating the Fire Resistance of Unreinforced Concrete Filled Tubular Columns. Engineering Structures, 42, 231-244. https://doi.org/10.1016/j.engstruct.2012.04.022
  • Etli, S. (2021). Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences, 7(3), 526-536. https://doi.org/ 10.29132/ijpas.991166
  • Etli, S., & Güneyisi, E. M. (2022a). Effect of Using Eccentric Braces with Different Link Lengths on the Seismic Demand of CFST Column‑Composite Beam Frames Subjected to Near‑Field and Far‑Field Earthquakes. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-022-00994-8
  • Etli, S., & Güneyisi, E. M. (2022b). Effect of nonlinear modeling approaches used for composite elements on seismic behavior of composite framed buildings. Sadhana, 47, 91. https://doi.org/10.1007/s12046-022-01871-w
  • Güneyisi, E. M., Gültekin, A., & Mermerdaş, K. (2016). Ultimate Capacity Prediction of Axially Loaded CFST Short Columns. International Journal of Steel Structures, 16 (1), 99-114. https://doi.org/10.1007/s13296-016-3009-9
  • Han, L. H., Chen, F., Liao, F. Y., Tao. Z., & Uy, B. (2013). Fire Performance of Concrete Filled Stainless Steel Tubular Columns. Engineering Structures, 56, 165-181. https://doi.org/10.1016/j.engstruct.2013.05.005
  • ISO 834 (1975). Fire-Resistance Tests-Elements of Building Construction, International Standard ISO 834, Geneva.
  • İpek, S., Güneyisi, E. M., Mermerdaş, K., & Algın, Z. (2021). Optimization and Modeling of Axial Strength of Concrete-Filled Double Skin Steel Tubular Columns Using Response Surface and Neural-Network Methods. Journal of Building Engineering, 43, 103128. https://doi.org/10.1016/j.jobe.2021.103128
  • İpek, S., & Güneyisi, E. M. (2020). Nonlinear Finite Element Analysis of Double Skin Composite Columns Subjected to Axial Loading. Archives of Civil and Mechanical Engineering, 20 (1), 1-25. https://doi.org/10.1007/s43452-020-0012-x
  • İpek, S., & Güneyisi, E. M. (2019). Ultimate Axial Strength of Concrete-Filled Double Skin Steel Tubular Column Sections. Advances in Civil Engineering, 219 (11), 1-19. 6493037. https://doi.org/10.1155/2019/6493037
  • Kalemi, B. (2016). Numerical Modeling and Assessment of Circular Concrete-Filled Steel Tubular Members. Master in Science Thesis, Istituto Universitario di Studi Superiori di Pavia.
  • Kodur, V. K. R. (2007). Guidelines for Fire Resistant Design of Concrete-Filled Steel HSS Columns - State-of-the-Art and Research Needs. Steel Structures, 7, 173-182.
  • Kodur, V. K. R. (1999). Performance-Based Fire Resistance Design of Concrete-Filled Steel Columns. Journal of Constructional Steel Research, 51 (1), 21-36. https://doi.org/10.1016/S0143-974X(99)00003-6
  • Kodur, V. K. R. (1998). Design Equations for Evaluating Fire Resistance of SFRC-Filled HSS Columns. Journal of Structural Engineering, 124 (6), 671-677. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(671)
  • Kodur, V. K. R., & Lie, T. T. (1995). Experimental Studies on the Fire Resistance of Circular Hollow Steel Columns Filled with Steel-Fibre-Reinforced Concrete (Internal Report No. 691). Canada: NRC-IRC.
  • Lennon, T., Moore, D.B., Wang, Y.C. & Bailey, C.G. (2007). Designers’ Guides to the Eurocodes. London: Thomas Telford Publishing.
  • Leskela, M. V. (2009). Inconsistencies in the Fire Design Rules of Composite Columns to EN 1994-1-2. Steel Concrete Composite and Hybrid Structures, 489-494. Leeds, England.
  • Lie, T. T., & Chabot, M. (1992). Experimental Studies on the Fire Resistance of Hollow Steel Columns Filled with Plain Concrete (Internal Report No. 611). Canada: NRC-IRC.
  • Lie, T. T., & Caron, S. E. (1988). Fire Resistance of Circular Hollow Steel Columns Filled with Siliceous Aggregate Concrete. (Test Results, Internal Report No. 570). Canada: NRC-IRC.
  • Lu, H., Zhao, X. L., & Han, L. H. (2009). Fire Behaviour of High Strength Self-Consolidating Concrete Filled Steel Tubular Stub Columns. Journal of Constructional Steel Research, 65, 1995-2010. https://doi.org/10.1016/j.jcsr.2009.06.013
  • Mao, W. J., Wang, W. D., & Xian, W. (2020). Numerical Analysis on Fire Performance of Steel-Reinforced Concrete-Filled Steel Tubular Columns with Square Cross-Section. Structures, 28, 1-16. https://doi.org/10.1016/j.istruc.2020.08.043
  • Moliner, V., Espinos, A., Romero, M.L., & Hospitaler, A. (2013). Fire Behavior of Eccentrically Loaded Slender High Strength Concrete-Filled Tubular Columns. Journal of Constructional Steel Research, 83, 137–146. https://doi.org/10.1016/j.jcsr.2013.01.011
  • Ribeiro, J. C. L., Fakury R. H., & de Las Casas, E. B. (2008). Eurocode Structural Fire Design and its Application for Composite Circular Hollow Section Columns. Journal of the Brazilian Society of Mechanical Science and Engineering, 30 (1), 39-46. https://doi.org/10.1590/S1678-58782008000100006
  • Rodrigues, J. P. C., & Laim, L. (2017). Fire Resistance of Restrained Composite Columns Made of Concrete Filled Hollow Sections. Journal of Constructional Steel Research, 133, 65-76. https://doi.org/10.1016/j.jcsr.2017.02.011
  • Romero, M. L., Moliner, V., Espinos, A., Ibanez, C., Hospitaler, A. (2011). Fire Behavior of Axially Loaded Slender High Strength Concrete-Filled Tubular Columns. Journal of Constructional Steel Research, 67, 1953-1965. https://doi.org/10.1016/j.jcsr.2011.06.012
  • Rush, D., Bisby, L., Jowsey, A., Melandinos, A., & Lane, B. (2012). Structural Performance of Unprotected Concrete-Filled Steel Hollow Sections in Fire: A Review and Meta-Analysis of Available Test Data. Steel and Composite Structures, 12 (4), 325–350. https://doi.org/10.12989/scs.2012.12.4.325
  • Sancıoğlu, S., İlgün, A., Çarbaş, S., & Akın, K. (2019). Beton Dolgulu Çelik Kirişlerin Eğilme Etkisinin Analitik Olarak İncelenmesi. 8. Uluslararası Çelik Yapılar Sempozyumu (pp. 416-421).
  • Sancıoğlu, S. (2020). Beton Dolgulu Çelik Kirişlerin Eğilme Etkisinin Deneysel ve Analitik Olarak İncelenmesi. Yüksek Lisans Tezi. KTO Karatay Üniversitesi, Lisansüstü Eğitim Enstitüsü, Konya.
  • Tao, Z. Ghannam, M., Song, T.Y., & Han, L. H. (2016). Experimental and Numerical Investigation of Concrete-Filled Stainless Steel Columns Exposed to Fire. Journal of Constructional Steel Research, 118, 120–134. https://doi.org/10.1016/j.jcsr.2015.11.003
  • Tondini, N., Hoang, V.L., Demonceau, J.F., & Franssen, J. M. (2013). Experimental and Numerical Investigation of High-Strength Steel Circular Columns Subjected to Fire. Journal of Constructional Steel Research, 80, 57–81. https://doi.org/10.1016/j.jcsr.2012.09.001
  • Ukanwa, K. U., Lim, J. B. P., Sharma, U. K., Hicks, S. J., Abu, A., & Clifton, G. C. (2017). Behaviour of Continuous Concrete Filled Steel Tubular Columns Loaded Eccentrically in Fire. Journal of Constructional Steel Research, 139, 280–287. https://doi.org/10.1016/j.jcsr.2017.09.030
  • Wang J. H., He, J., & Xiao, Y. (2019). Fire Behavior and Performance of Concrete-Filled Steel Tubular Columns: Review and Discussion. Journal of Constructional Steel Research, 157, 19–31. https://doi.org/10.1016/j.jcsr.2019.02.012
  • Wang K., & Young, B. (2013). Fire Resistance of Concrete-Filled High Strength Steel Tubular Columns. Thin-Walled Structures, 71, 46–56. https://doi.org/10.1016/j.tws.2013.05.005
  • Wang, Y.C., & Orton, A. (2008). Fire Resistant Design of Concrete Filled Tubular Steel Columns. The Structural Engineer, 86 (19), 40-45.
  • Wang, Y. C. (2000). A Simple Method for Calculating the Fire Resistance of Concrete-Filled CHS Columns. Journal of Constructional Steel Research, 54 (3), 365-386. https://doi.org/10.1016/S0143-974X(99)00061-9
  • Wang ,Y. C. (1997). Some Considerations in the Design of Unprotected Concrete-Filled Steel Tubular Columns Under Fire Conditions. Journal of Constructional Steel Research, 44 (3), 203-223. https://doi.org/10.1016/S0143-974X(97)00060-6
  • Xiong, M. X., & Liew, J. Y. R. (2021). Fire Resistance of High-Strength Steel Tubes Infilled with Ultra-High-Strength Concrete Under Compression. Journal of Constructional Steel Research, 176, 106410. https://doi.org/10.1016/j.jcsr.2020.106410
  • Yao, Y., Li, H., Guo, H., & Tan, K. (2016). Fire Resistance of Eccentrically Loaded Slender Concrete Filled Steel Tubular Columns. Thin-Walled Structures, 106, 102–112. https://doi.org/10.1016/j.tws.2016.04.025
  • Yin, J., Zha, X. X., & Li, L.Y. (2006). Fire Resistance of Axially Loaded Concrete Filled Steel Tube Columns. Journal of Constructional Steel Research, 62, 723–729. https://doi.org/10.1016/j.jcsr.2005.11.011
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Özge Çiğdem Özelmacı Durmaz 0000-0002-9517-776X

Süleyman İpek 0000-0001-8891-949X

Dia Eddin Nassani 0000-0002-4196-8822

Esra Mete Güneyisi 0000-0002-4598-5582

Publication Date March 15, 2023
Submission Date October 3, 2022
Published in Issue Year 2023Volume: 26 Issue: 1

Cite

APA Özelmacı Durmaz, Ö. Ç., İpek, S., Nassani, D. E., Güneyisi, E. M. (2023). Beton dolgulu çelik tüp kolonların yangın performansının araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 289-294. https://doi.org/10.17780/ksujes.1183702