Research Article
BibTex RIS Cite

HIZLANDIRILMIŞ VE DOĞAL YAŞLANDIRMANIN ÇAM KABUĞU VE KOZALAĞINDAN ÜRETİLEN KOMPOZİT MALZEMELERİN BAZI ÖZELLİKLERİ ÜZERİNE ETKİLERİ

Year 2023, Volume: 26 Issue: 3, 753 - 764, 03.09.2023
https://doi.org/10.17780/ksujes.1297937

Abstract

Gerek odun gerekse diğer lignoselülozik malzemeler açık havada kullanıldıklarında güneş ışınları başta olmak üzere birçok etkilere maruz kalırlar. Bu malzemelerin daha uzun süre kullanılabilmeleri için bu etkilerin sonuçlarının bilinmesi gerekir. Bu çalışmada, perlit katkılı çam kabuğu ve kozalaklarından yapılan kalıplanmış kompozit malzemelerin hızlı (UV ışın altında) ve doğal yaşlandırma sonucu renk, parlaklık, kütle kaybı ile bazı fiziksel ve mekanik özelliklerinin malzeme içeriğindeki hammaddelerin parçacık büyüklüğü ve perlit oranıyla değişimi araştırılmıştır. Sonuçlara göre, yaşlandırma testi sonrasında toplam renk farkı değerleri için farklı renk değişimi ve yüksek renk değişimi kriterlerine rastlanılmamış; fakat yapay yaşlandırmanın L*, a* ve b* parametrelerini değiştirici etkide bulunduğu tespit edilmiştir. UV yaşlandırma sonrası A grubu malzemeler hariç tüm malzemelerin basınç dayanımının ve yoğunluğunun azaldığı; toprak testi sonuçlarına göre UV öncesi kütle kayıplarının büyük farklılıklar gösterdiği ve en fazla kaybın kozalak içeren örneklerde olduğu ölçülmüştür. UV muamelesinin kütle kaybı açısından tüm örneklerde birbirine yakın etki ettiği belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

217O356

Thanks

Bu çalışmada kullanılan veriler, TÜBİTAK tarafından desteklenen 217O356 numaralı projeden elde edilmiştir. Ayrıca desteklerinden dolayı Bekir Cihad BAL, Ertuğrul ALTUNTAŞ ve Kadir KARAKUŞ’a teşekkürlerimi iletirim.

References

  • Arrakhiz, F. Z., Benmoussa, K., Bouhfid, R., & Qaiss, A. (2013). Pine cone fiber/clay hybrid composite: Mechanical and thermal properties. Materials and Design, 50, 376–381. https://doi.org/10.1016/j.matdes.2013.03.033
  • Arrakhiz, F. Z., El Achaby, M., Benmoussa, K., Bouhfid, R., Essassi, E. M., & Qaiss, A. (2012). Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Materials and Design, 40, 528–535. https://doi.org/10.1016/j.matdes.2012.04.032
  • Ayata, Ü. (2019). İzmir yöresinde yetişen erik, karabiber ve tespih odunlarının statik sertliğinin belirlenmesi üzerine bir araştırma. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 2(2), 94–102.
  • AYAta, Ü., Çakıcıer, N., & Gürleyen, L. (2021). İç mekânda kullanılan UV sistem parke verniği uygulanmış kayısı odununun yapay yaşlandırma performansının belirlenmesi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 40–50. https://doi.org/10.33725/mamad.922311
  • Ayrilmis, N., Buyuksari, U., Avci, E., & Koc, E. (2009). Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecology and Management, 259(1), 65–70. https://doi.org/10.1016/j.foreco.2009.09.043
  • Baranski, J., Klement, I., Vilkovská, T., & Konopka, A. (2017). High temperature drying process of beech wood (Fagus sylvatica L.) with different zones of sapwood and red false heartwood. In BioResources (Vol. 12, Issue 1, pp. 1861–1870). https://doi.org/10.15376/biores.12.1.1861-1870
  • Barbu, M. C. (2011). Current Developments In The Forestry And Wood Industry. Pro Ligno, 8, 89–99.
  • Baştürk S.B., Kürşat, K., İ., P., & Y., Y. (2015). Mechanical Properties of Acorn and Pine Cone Filled Polymer Composites. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 14(2), 144–153. http://asrjetsjournal.org/
  • Berge, B. (2009). The Ecology of Building Materials (Second). Architectural Press.
  • Blanchet, P., Cloutier, A., & Riedl, B. (2000). Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology, 34(1), 11–19. https://doi.org/10.1007/s002260050003
  • Brischke, C., & Alfredsen, G. (2020). Wood-water relationships and their role for wood susceptibility to fungal decay. Applied Microbiology and Biotechnology, 104(9), 3781–3795. https://doi.org/10.1007/s00253-020-10479-1
  • Busquets-Ferrer, M., Czabany, I., Vay, O., Gindl-Altmutter, W., & Hansmann, C. (2021). Alkali-extracted tree bark for efficient bio-based thermal insulation. Construction and Building Materials, 271(xxxx), 121577. https://doi.org/10.1016/j.conbuildmat.2020.121577
  • Buyuksari, U., Ayrilmis, N., Avci, E., & Koc, E. (2010). Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Bioresource Technology, 101(1), 255–259. https://doi.org/10.1016/j.biortech.2009.08.038
  • Cogulet, A., Blanchet, P., & Landry, V. (2016a). Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology B: Biology, 158, 184–191. https://doi.org/10.1016/j.jphotobiol.2016.02.030
  • Cogulet, A., Blanchet, P., & Landry, V. (2016b). Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology B: Biology, 158, 184–191. https://doi.org/10.1016/j.jphotobiol.2016.02.030
  • Efe, F. T. (2022). Investigation of some physical and thermal insulation properties of honeycomb-designed panels produced from Calabrian pine bark and cones. European Journal of Wood and Wood Products, 80(3), 705–718. https://doi.org/10.1007/s00107-021-01781-4
  • FAO (Food and Agriculture Organization of The United. (2021). No Title. http://www.fao.org/faostat/en/#data/FO
  • Ferreira, R., Pereira, D., Gago, A., & Proença, J. (2016). Experimental characterisation of cork agglomerate core sandwich panels for wall assemblies in buildings. Journal of Building Engineering, 5, 194–210. https://doi.org/10.1016/j.jobe.2016.01.003
  • Guo, Y., Liu, D., Chen, Y., Zhang, T., & Zhu, S. (2019). Preparation and properties of carbon-fiber- and pine-cone-fiber-reinforced high-density polyethylene composites. Journal of Applied Polymer Science, 136(14), 1–7. https://doi.org/10.1002/app.47304
  • Holmberg, A., Wadsö, L., & Stenström, S. (2016). Water vapor sorption and diffusivity in bark. Drying Technology, 34(2), 150–160. https://doi.org/10.1080/07373937.2015.1023310
  • Hoong, Y. B., Paridah, M. T., Loh, Y. F., Jalaluddin, H., & Chuah, L. A. (2011). A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. International Journal of Adhesion and Adhesives, 31(3), 164–167. https://doi.org/10.1016/j.ijadhadh.2010.12.002
  • Jha, K., Tyagi, Y. K., & Singh Yadav, A. (2018). Mechanical and thermal behaviour of biodegradable composites based on polycaprolactone with pine cone particle. Sadhana - Academy Proceedings in Engineering Sciences, 43(9), 1–5. https://doi.org/10.1007/s12046-018-0822-1
  • Kain, G., Barbu, M.-C., Richter, K., Plank, B., Tondi, G., & Petutschnigg, A. (2015). Use of tree bark as insulation material. Forest Products Journal, 65(3–4), 16–25.
  • Kain, G. (2016). Design of tree bark insulation boards : analysis of material , structure and property relationships.
  • Kain, G., Barbu, M. C., Teischinger, A., Musso, M., & Petutschnigg, A. (2012). Substantial bark use as insulation material. Forest Products Journal, 62(6), 480–487. https://doi.org/10.13073/FPJ-D-12-00052.1
  • Kain, G., Güttler, V., Barbu, M. C., Petutschnigg, A., Richter, K., & Tondi, G. (2014). Density related properties of bark insulation boards bonded with tannin hexamine resin. European Journal of Wood and Wood Products, 72(4), 417–424. https://doi.org/10.1007/s00107-014-0798-4
  • Kain, G., Lienbacher, B., Barbu, M. C., Senck, S., & Petutschnigg, A. (2018). Water vapour diffusion resistance of larch (Larix decidua) bark insulation panels and application considerations based on numeric modelling. Construction and Building Materials, 164, 308–316. https://doi.org/10.1016/j.conbuildmat.2017.12.212
  • Kılıç, A., & Hafızoğlu, H. (2009). Açık Hava Koşullarının Ağaç Malzemenin Kimyasal Yapısında Meydana Getirdiği Değişimler ve Alınacak Önlemler. Türkiye Ormancılık Dergisi, 8(2), 175–183. https://dergipark.org.tr/tr/pub/tjf/issue/20889/224156
  • Kolář, V., Tichý, M., & Müller, M. (2019). Mechanical properties of polymeric composite based on pine seeds production residues. Manufacturing Technology, 19(3), 426–430. https://doi.org/10.21062/ujep/308.2019/a/1213-2489/MT/19/3/426
  • Korjenic, A., Petránek, V., Zach, J., & Hroudová, J. (2011). Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings, 43(9), 2518–2523. https://doi.org/10.1016/j.enbuild.2011.06.012
  • Kositchaiyong, A., Rosarpitak, V., Hamada, H., & Sombatsompop, N. (2014). Anti-fungal performance and mechanical-morphological properties of PVC and wood/PVC composites under UV-weathering aging and soil-burial exposure. International Biodeterioration and Biodegradation, 91, 128–137. https://doi.org/10.1016/j.ibiod.2014.01.022
  • Kuka, E., Andersons, B., Cirule, D., Andersone, I., Kajaks, J., Militz, H., & Bicke, S. (2020). Weathering properties of wood-plastic composites based on heat-treated wood and polypropylene. Composites Part A: Applied Science and Manufacturing, 139(September), 106102. https://doi.org/10.1016/j.compositesa.2020.106102
  • La Rosa, A. D., Recca, A., Gagliano, A., Summerscales, J., Latteri, A., Cozzo, G., & Cicala, G. (2014). Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Construction and Building Materials, 55, 406–414. https://doi.org/10.1016/j.conbuildmat.2014.01.054
  • Ly, B. C. K., Dyer, E. B., Feig, J. L., Chien, A. L., & Del Bino, S. (2020). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. Journal of Investigative Dermatology, 140(1), 3-12.e1. https://doi.org/10.1016/j.jid.2019.11.003
  • Özdemir F., Dalgıç E., Özğan A.O, A. E. (2018). Kayın kaplamaların yüzey pürüzlülüğü üzerine yaşlandırmanın etkisi. 2–7.
  • Pandey, K. K. (2005). A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability, 87(2), 375–379. https://doi.org/10.1016/j.polymdegradstab.2004.09.007
  • Pásztory, Z., Mohácsiné, I. R., Gorbacheva, G., & Börcsök, Z. (2016). The utilization of tree bark. BioResources, 11(3), 7859–7888. https://doi.org/10.15376/biores.11.3.Pasztory
  • Pásztory, Z., Ronyecz Mohácsiné, I., & Börcsök, Z. (2017). Investigation of thermal insulation panels made of black locust tree bark. Construction and Building Materials, 147, 733–735. https://doi.org/10.1016/j.conbuildmat.2017.04.204
  • Rosu, D., Teaca, C. A., Bodirlau, R., & Rosu, L. (2010). FTIR and color change of the modified wood as a result of artificial light irradiation. Journal of Photochemistry and Photobiology B: Biology, 99(3), 144–149. https://doi.org/10.1016/j.jphotobiol.2010.03.010
  • Sahin, H. T., & Arslan, M. B. (2011). Weathering performance of particleboards manufactured from blends of forest residues with red pine (Pinus brutia) wood. Maderas: Ciencia y Tecnologia, 13(3), 337–346. https://doi.org/10.4067/S0718-221X2011000300009
  • Tsalagkas, D., Börcsök, Z., & Pásztory, Z. (2019). Thermal, physical and mechanical properties of surface overlaid bark-based insulation panels. European Journal of Wood and Wood Products, 77(5), 721–730. https://doi.org/10.1007/s00107-019-01436-5
  • TS EN 826 (2013) Isı yalıtım mamulleri - Binalar için-Basınç altındaki davranışın tayini. Türk Standartları Enstitüsü, Ankara, Türkiye
  • Tudor, E. M., Dettendorfer, A., Kain, G., Barbu, M. C., Réh, R., & Krišt’ák, L. (2020). Sound-absorption coefficient of bark-based insulation panels. Polymers, 12(5). https://doi.org/10.3390/POLYM12051012
  • Tudor, E. M., Scheriau, C., Barbu, M. C., Réh, R., Krišt’ák, L., & Schnabel, T. (2020). Enhanced resistance to fire of the bark-based panels bonded with clay. Applied Sciences (Switzerland), 10(16), 5594. https://doi.org/10.3390/app10165594
  • Wesolowski, A., Adams, M. A., & Pfautsch, S. (2014). Insulation capacity of three bark types of temperate Eucalyptus species. Forest Ecology and Management, 313(2014), 224–232. https://doi.org/10.1016/j.foreco.2013.11.015
  • Williams, R. S. (2010). Chapter 16 - Finishing of Wood. In Wood Handbook - Wood as an engineering material (pp. 1–39).
  • Xing, C., Zhang, S. Y., Deng, J., & Wang, S. (2007). Investigation of the effects of bark fiber as core material and its resin content on three-layer MDF performance by response surface methodology. Wood Science and Technology, 41(7), 585–595. https://doi.org/10.1007/s00226-007-0129-6
  • Zborowska, M., Stachowiak-Wencek, A., Nowaczyk-Organista, M., Waliszewska, B., & Prądzyński, W. (2015). Analysis of photodegradation process of Pinus sylvestris L. wood after treatment with acid and alkaline buffers and light irradiation. BioResources, 10(2), 2057–2066.

EFFECTS OF ACCELERATED AND NATURAL AGING ON SOME PROPERTIES OF COMPOSITE MATERIALS PRODUCED FROM PINE BARK AND CONES

Year 2023, Volume: 26 Issue: 3, 753 - 764, 03.09.2023
https://doi.org/10.17780/ksujes.1297937

Abstract

Both wood and other lignocellulosic materials are exposed to many factors, particularly sunlight, when they are used outdoors. In order for these materials to be used for a longer period, the results of these effects need to be known. In this study, the changes in color, gloss, mass loss, and some physical and mechanical properties of molded composite materials made from perlite-added pine bark and cones were investigated as a function of the particle size of the raw materials and the perlite content under rapid (under UV) and natural aging. According to the results, no different color change or high color change criteria were found for total color difference values after the aging test. Additionally, it was found that artificial aging had a changing effect on the L*, a*, and b* parameters. After UV aging, except for Group A materials, the compressive strength and density of all materials decreased. Based on soil test results, significant differences were observed in mass losses before UV, and the highest loss was measured in the samples containing cones. It was determined that the effect of UV treatment on mass loss was similar for all samples

Project Number

217O356

References

  • Arrakhiz, F. Z., Benmoussa, K., Bouhfid, R., & Qaiss, A. (2013). Pine cone fiber/clay hybrid composite: Mechanical and thermal properties. Materials and Design, 50, 376–381. https://doi.org/10.1016/j.matdes.2013.03.033
  • Arrakhiz, F. Z., El Achaby, M., Benmoussa, K., Bouhfid, R., Essassi, E. M., & Qaiss, A. (2012). Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Materials and Design, 40, 528–535. https://doi.org/10.1016/j.matdes.2012.04.032
  • Ayata, Ü. (2019). İzmir yöresinde yetişen erik, karabiber ve tespih odunlarının statik sertliğinin belirlenmesi üzerine bir araştırma. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 2(2), 94–102.
  • AYAta, Ü., Çakıcıer, N., & Gürleyen, L. (2021). İç mekânda kullanılan UV sistem parke verniği uygulanmış kayısı odununun yapay yaşlandırma performansının belirlenmesi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 40–50. https://doi.org/10.33725/mamad.922311
  • Ayrilmis, N., Buyuksari, U., Avci, E., & Koc, E. (2009). Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecology and Management, 259(1), 65–70. https://doi.org/10.1016/j.foreco.2009.09.043
  • Baranski, J., Klement, I., Vilkovská, T., & Konopka, A. (2017). High temperature drying process of beech wood (Fagus sylvatica L.) with different zones of sapwood and red false heartwood. In BioResources (Vol. 12, Issue 1, pp. 1861–1870). https://doi.org/10.15376/biores.12.1.1861-1870
  • Barbu, M. C. (2011). Current Developments In The Forestry And Wood Industry. Pro Ligno, 8, 89–99.
  • Baştürk S.B., Kürşat, K., İ., P., & Y., Y. (2015). Mechanical Properties of Acorn and Pine Cone Filled Polymer Composites. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 14(2), 144–153. http://asrjetsjournal.org/
  • Berge, B. (2009). The Ecology of Building Materials (Second). Architectural Press.
  • Blanchet, P., Cloutier, A., & Riedl, B. (2000). Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology, 34(1), 11–19. https://doi.org/10.1007/s002260050003
  • Brischke, C., & Alfredsen, G. (2020). Wood-water relationships and their role for wood susceptibility to fungal decay. Applied Microbiology and Biotechnology, 104(9), 3781–3795. https://doi.org/10.1007/s00253-020-10479-1
  • Busquets-Ferrer, M., Czabany, I., Vay, O., Gindl-Altmutter, W., & Hansmann, C. (2021). Alkali-extracted tree bark for efficient bio-based thermal insulation. Construction and Building Materials, 271(xxxx), 121577. https://doi.org/10.1016/j.conbuildmat.2020.121577
  • Buyuksari, U., Ayrilmis, N., Avci, E., & Koc, E. (2010). Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Bioresource Technology, 101(1), 255–259. https://doi.org/10.1016/j.biortech.2009.08.038
  • Cogulet, A., Blanchet, P., & Landry, V. (2016a). Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology B: Biology, 158, 184–191. https://doi.org/10.1016/j.jphotobiol.2016.02.030
  • Cogulet, A., Blanchet, P., & Landry, V. (2016b). Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology B: Biology, 158, 184–191. https://doi.org/10.1016/j.jphotobiol.2016.02.030
  • Efe, F. T. (2022). Investigation of some physical and thermal insulation properties of honeycomb-designed panels produced from Calabrian pine bark and cones. European Journal of Wood and Wood Products, 80(3), 705–718. https://doi.org/10.1007/s00107-021-01781-4
  • FAO (Food and Agriculture Organization of The United. (2021). No Title. http://www.fao.org/faostat/en/#data/FO
  • Ferreira, R., Pereira, D., Gago, A., & Proença, J. (2016). Experimental characterisation of cork agglomerate core sandwich panels for wall assemblies in buildings. Journal of Building Engineering, 5, 194–210. https://doi.org/10.1016/j.jobe.2016.01.003
  • Guo, Y., Liu, D., Chen, Y., Zhang, T., & Zhu, S. (2019). Preparation and properties of carbon-fiber- and pine-cone-fiber-reinforced high-density polyethylene composites. Journal of Applied Polymer Science, 136(14), 1–7. https://doi.org/10.1002/app.47304
  • Holmberg, A., Wadsö, L., & Stenström, S. (2016). Water vapor sorption and diffusivity in bark. Drying Technology, 34(2), 150–160. https://doi.org/10.1080/07373937.2015.1023310
  • Hoong, Y. B., Paridah, M. T., Loh, Y. F., Jalaluddin, H., & Chuah, L. A. (2011). A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. International Journal of Adhesion and Adhesives, 31(3), 164–167. https://doi.org/10.1016/j.ijadhadh.2010.12.002
  • Jha, K., Tyagi, Y. K., & Singh Yadav, A. (2018). Mechanical and thermal behaviour of biodegradable composites based on polycaprolactone with pine cone particle. Sadhana - Academy Proceedings in Engineering Sciences, 43(9), 1–5. https://doi.org/10.1007/s12046-018-0822-1
  • Kain, G., Barbu, M.-C., Richter, K., Plank, B., Tondi, G., & Petutschnigg, A. (2015). Use of tree bark as insulation material. Forest Products Journal, 65(3–4), 16–25.
  • Kain, G. (2016). Design of tree bark insulation boards : analysis of material , structure and property relationships.
  • Kain, G., Barbu, M. C., Teischinger, A., Musso, M., & Petutschnigg, A. (2012). Substantial bark use as insulation material. Forest Products Journal, 62(6), 480–487. https://doi.org/10.13073/FPJ-D-12-00052.1
  • Kain, G., Güttler, V., Barbu, M. C., Petutschnigg, A., Richter, K., & Tondi, G. (2014). Density related properties of bark insulation boards bonded with tannin hexamine resin. European Journal of Wood and Wood Products, 72(4), 417–424. https://doi.org/10.1007/s00107-014-0798-4
  • Kain, G., Lienbacher, B., Barbu, M. C., Senck, S., & Petutschnigg, A. (2018). Water vapour diffusion resistance of larch (Larix decidua) bark insulation panels and application considerations based on numeric modelling. Construction and Building Materials, 164, 308–316. https://doi.org/10.1016/j.conbuildmat.2017.12.212
  • Kılıç, A., & Hafızoğlu, H. (2009). Açık Hava Koşullarının Ağaç Malzemenin Kimyasal Yapısında Meydana Getirdiği Değişimler ve Alınacak Önlemler. Türkiye Ormancılık Dergisi, 8(2), 175–183. https://dergipark.org.tr/tr/pub/tjf/issue/20889/224156
  • Kolář, V., Tichý, M., & Müller, M. (2019). Mechanical properties of polymeric composite based on pine seeds production residues. Manufacturing Technology, 19(3), 426–430. https://doi.org/10.21062/ujep/308.2019/a/1213-2489/MT/19/3/426
  • Korjenic, A., Petránek, V., Zach, J., & Hroudová, J. (2011). Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings, 43(9), 2518–2523. https://doi.org/10.1016/j.enbuild.2011.06.012
  • Kositchaiyong, A., Rosarpitak, V., Hamada, H., & Sombatsompop, N. (2014). Anti-fungal performance and mechanical-morphological properties of PVC and wood/PVC composites under UV-weathering aging and soil-burial exposure. International Biodeterioration and Biodegradation, 91, 128–137. https://doi.org/10.1016/j.ibiod.2014.01.022
  • Kuka, E., Andersons, B., Cirule, D., Andersone, I., Kajaks, J., Militz, H., & Bicke, S. (2020). Weathering properties of wood-plastic composites based on heat-treated wood and polypropylene. Composites Part A: Applied Science and Manufacturing, 139(September), 106102. https://doi.org/10.1016/j.compositesa.2020.106102
  • La Rosa, A. D., Recca, A., Gagliano, A., Summerscales, J., Latteri, A., Cozzo, G., & Cicala, G. (2014). Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Construction and Building Materials, 55, 406–414. https://doi.org/10.1016/j.conbuildmat.2014.01.054
  • Ly, B. C. K., Dyer, E. B., Feig, J. L., Chien, A. L., & Del Bino, S. (2020). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. Journal of Investigative Dermatology, 140(1), 3-12.e1. https://doi.org/10.1016/j.jid.2019.11.003
  • Özdemir F., Dalgıç E., Özğan A.O, A. E. (2018). Kayın kaplamaların yüzey pürüzlülüğü üzerine yaşlandırmanın etkisi. 2–7.
  • Pandey, K. K. (2005). A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability, 87(2), 375–379. https://doi.org/10.1016/j.polymdegradstab.2004.09.007
  • Pásztory, Z., Mohácsiné, I. R., Gorbacheva, G., & Börcsök, Z. (2016). The utilization of tree bark. BioResources, 11(3), 7859–7888. https://doi.org/10.15376/biores.11.3.Pasztory
  • Pásztory, Z., Ronyecz Mohácsiné, I., & Börcsök, Z. (2017). Investigation of thermal insulation panels made of black locust tree bark. Construction and Building Materials, 147, 733–735. https://doi.org/10.1016/j.conbuildmat.2017.04.204
  • Rosu, D., Teaca, C. A., Bodirlau, R., & Rosu, L. (2010). FTIR and color change of the modified wood as a result of artificial light irradiation. Journal of Photochemistry and Photobiology B: Biology, 99(3), 144–149. https://doi.org/10.1016/j.jphotobiol.2010.03.010
  • Sahin, H. T., & Arslan, M. B. (2011). Weathering performance of particleboards manufactured from blends of forest residues with red pine (Pinus brutia) wood. Maderas: Ciencia y Tecnologia, 13(3), 337–346. https://doi.org/10.4067/S0718-221X2011000300009
  • Tsalagkas, D., Börcsök, Z., & Pásztory, Z. (2019). Thermal, physical and mechanical properties of surface overlaid bark-based insulation panels. European Journal of Wood and Wood Products, 77(5), 721–730. https://doi.org/10.1007/s00107-019-01436-5
  • TS EN 826 (2013) Isı yalıtım mamulleri - Binalar için-Basınç altındaki davranışın tayini. Türk Standartları Enstitüsü, Ankara, Türkiye
  • Tudor, E. M., Dettendorfer, A., Kain, G., Barbu, M. C., Réh, R., & Krišt’ák, L. (2020). Sound-absorption coefficient of bark-based insulation panels. Polymers, 12(5). https://doi.org/10.3390/POLYM12051012
  • Tudor, E. M., Scheriau, C., Barbu, M. C., Réh, R., Krišt’ák, L., & Schnabel, T. (2020). Enhanced resistance to fire of the bark-based panels bonded with clay. Applied Sciences (Switzerland), 10(16), 5594. https://doi.org/10.3390/app10165594
  • Wesolowski, A., Adams, M. A., & Pfautsch, S. (2014). Insulation capacity of three bark types of temperate Eucalyptus species. Forest Ecology and Management, 313(2014), 224–232. https://doi.org/10.1016/j.foreco.2013.11.015
  • Williams, R. S. (2010). Chapter 16 - Finishing of Wood. In Wood Handbook - Wood as an engineering material (pp. 1–39).
  • Xing, C., Zhang, S. Y., Deng, J., & Wang, S. (2007). Investigation of the effects of bark fiber as core material and its resin content on three-layer MDF performance by response surface methodology. Wood Science and Technology, 41(7), 585–595. https://doi.org/10.1007/s00226-007-0129-6
  • Zborowska, M., Stachowiak-Wencek, A., Nowaczyk-Organista, M., Waliszewska, B., & Prądzyński, W. (2015). Analysis of photodegradation process of Pinus sylvestris L. wood after treatment with acid and alkaline buffers and light irradiation. BioResources, 10(2), 2057–2066.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies, Forest Industry Engineering
Journal Section Forest Engineering
Authors

Fatih Tuncay Efe 0000-0002-7247-1288

Project Number 217O356
Publication Date September 3, 2023
Submission Date May 18, 2023
Published in Issue Year 2023Volume: 26 Issue: 3

Cite

APA Efe, F. T. (2023). HIZLANDIRILMIŞ VE DOĞAL YAŞLANDIRMANIN ÇAM KABUĞU VE KOZALAĞINDAN ÜRETİLEN KOMPOZİT MALZEMELERİN BAZI ÖZELLİKLERİ ÜZERİNE ETKİLERİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 753-764. https://doi.org/10.17780/ksujes.1297937