Research Article
BibTex RIS Cite

Al İÇERİĞİNİN (CoCrFe)60AlXNi(40-X) YÜKSEK ENTROPİLİ ALAŞIMININ YAPISAL VE MEKANİK ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİ

Year 2023, Volume: 26 Issue: 4, 812 - 822, 03.12.2023
https://doi.org/10.17780/ksujes.1279081

Abstract

Bu çalışmada, farklı alüminyum içeriğine sahip (CoCrFe)60AlxNi(40-x) alaşımları (x=5, 10, 20, 30 % at.) ark ergitme yöntemiyle üretilmiş ve 4 mm çapındaki silindirik bakır kalıp içerisine dökümü yapılmıştır. Elde edilen silindir şeklinde alaşımlar, XRD ve SEM ile yapısal olarak incelenmiş ve değişen oranlardaki Al ve Ni elementlerinin kristal yapıya, mikro yapıya ve mekanik özelliklere olan etkisi araştırılmıştır. Alaşım içerisinde oluşan fazlar, Thermo-Calc yazılımı kullanılarak ve termodinamik yaklaşımlar sergilenerek deneysel olarak elde edilen sonuçlarla kıyaslanmıştır. Alaşımların sahip olduğu mekanik özellikleri tespit etmek amacıyla sertlik ve basma testleri uygulanmıştır. Deneysel sonuçlar, alaşım içerisindeki Al miktarının %5 at.’den %30 at.’ye çıkmasıyla beraber, alaşımın temel kristal yapısının YMK yapıdan HMK’ye doğru geçiş yaptığını göstermiştir. Bununla beraber, alaşım içerisinde Al miktarının artması, mikro yapıda bir miktar AlNi intermetalik fazlarının da oluşmasına neden olmuştur. Al oranının artmasıyla hem kristal yapının değişmesi, hem de intermetalik fazların oluşması, alaşımın sertlik değerinin 146±3 HV’den 563±6 HV’ye kadar; akma dayancının ise 193 MPa’dan 1260 MPa değerine kadar yükselmesini sağlamıştır. Yapısal analizler ve mekanik testler, (CoCrFe)60Al20Ni20 YEA'sının mukavemet-süneklik dengesi açısından en umut verici alaşım olduğunu göstermiştir.

References

  • Beyramali Kivy, M., Asle Zaeem, M., & Lekakh, S. (2017). Investigating phase formations in cast AlFeCoNiCu high entropy alloys by combination of computational modeling and experiments. Materials and Design, 127(February), 224–232. https://doi.org/10.1016/j.matdes.2017.04.086
  • Bönisch, M., Wu, Y., & Sehitoglu, H. (2018). Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature. Scientific Reports 2018 8:1, 8(1), 1–9. https://doi.org/10.1038/s41598-018-28784-1
  • Cai, Y., Ao, S., Marwana Manladan, S., Xue, J., & Luo, Z. (2019). Evolution mechanisms of TiC ceramic particles in FeCoCrNiAl high-entropy alloy laser cladding layers. Materials Research Express, 6(10), 1065d2. https://doi.org/10.1088/2053-1591/AB405D
  • Cai, Y., Zhu, L., Cui, Y., Geng, K., Marwana Manladan, S., & Luo, Z. (2019). High-temperature oxidation behavior of FeCoCrNiAlx high-entropy alloy coatings. Materials Research Express, 6(12), 126552. https://doi.org/10.1088/2053-1591/AB562D
  • Diao, H., Ma, D., Feng, R., Liu, T., Pu, C., Zhang, C., Guo, W., Poplawsky, J. D., Gao, Y., & Liaw, P. K. (2019). Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility. Materials Science and Engineering A, 742, 636–647. https://doi.org/10.1016/j.msea.2018.11.055
  • Geanta, V., Voiculescu, I., Milosan, I., Istrate, B., & Mates, I. M. (2018). Chemical composition influence on microhardness, microstructure and phase morphology of AlxCrFeCoNi high entropy alloys. Revista de Chimie, 69(4), 798–801.
  • George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature Reviews Materials 2019 4:8, 4(8), 515–534. https://doi.org/10.1038/s41578-019-0121-4
  • Guo, S., Ng, C., & Liu, C. T. (2013). Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys. Journal of Alloys and Compounds, 557, 77–81. https://doi.org/10.1016/j.jallcom.2013.01.007
  • Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10), 103505. https://doi.org/10.1063/1.3587228
  • Han, Q. (2008). Shrinkage Porosity and Gas Porosity. Içinde S. Viswanathan, D. Apelian, R. J. Donahue, B. DasGupta, M. Gywn, J. L. Jorstad, R. W. Monroe, M. Sahoo, T. E. Prucha, & D. Twarog (Ed.), Casting (C. 15, s. 0). ASM International. https://doi.org/10.31399/asm.hb.v15.a0005222
  • Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., & Fabijanic, D. M. (2015). Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Materials Science and Engineering: A, 633, 184–193.
  • Kao, Y.-F., Chen, T.-J., Chen, S.-K., & Yeh, J.-W. (2009). Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57–64.
  • Li, C., Li, J. C., Zhao, M., & Jiang, Q. (2009). Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 475(1–2), 752–757. https://doi.org/10.1016/j.jallcom.2008.07.124
  • Li, C., Li, J. C., Zhao, M., & Jiang, Q. (2010). Effect of aluminum contents on microstructure and properties of Al xCoCrFeNi alloys. Journal of Alloys and Compounds, 504(SUPPL. 1). https://doi.org/10.1016/J.JALLCOM.2010.03.111
  • Li, Z., Zhao, S., Ritchie, R. O., & Meyers, M. A. (2019). Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 102(March 2018), 296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003
  • Lim, S. J., & Huh, H. (2022). Ductile fracture behavior of BCC and FCC metals at a wide range of strain rates. International Journal of Impact Engineering, 159, 104050. https://doi.org/10.1016/J.IJIMPENG.2021.104050
  • Liu, J., Wang, X., Singh, A. P., Xu, H., Kong, F., & Yang, F. (2021). The evolution of intermetallic compounds in high-entropy alloys: From the secondary phase to the main phase. Metals, 11(12). https://doi.org/10.3390/met11122054
  • Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., & Wanderka, N. (2013). Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy, 132, 212–215. https://doi.org/10.1016/J.ULTRAMIC.2012.12.015
  • Miracle, D. B., Miller, J. D., Senkov, O. N., Woodward, C., Uchic, M. D., & Tiley, J. (2014). Exploration and Development of High Entropy Alloys for Structural Applications. Entropy 2014, Vol. 16, Pages 494-525, 16(1), 494–525. https://doi.org/10.3390/E16010494
  • Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511. https://doi.org/10.1016/j.actamat.2016.08.081
  • Murty, B. S., Yeh, J. W., Ranganathan, S., & Bhattacharjee, P. P. (2019). High-entropy alloys: basic concepts. Içinde High-Entropy Alloys (ss. 13–30). Elsevier. https://doi.org/10.1016/B978-0-12-816067-1.00002-3
  • Polat, G., Erdal, Z. A., & Kalay, Y. E. (2020). Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys. Journal of Materials Engineering and Performance, 29(5), 2898–2908. https://doi.org/10.1007/s11665-020-04830-w
  • Polat, G., Teki̇n, M., & Kotan, H. (2022). Role of yttrium addition and annealing temperature on thermal stability and hardness of nanocrystalline CoCrFeNi high entropy alloy. Intermetallics, 146(May), 107589. https://doi.org/10.1016/j.intermet.2022.107589
  • Shiratori, H., Fujieda, T., Yamanaka, K., Koizumi, Y., Kuwabara, K., Kato, T., & Chiba, A. (2016). Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Materials Science and Engineering A, 656, 39–46. https://doi.org/10.1016/j.msea.2016.01.019
  • Sistla, H. R., Newkirk, J. W., & Frank Liou, F. (2015). Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2-x (x=0.3, 1) high entropy alloys. Materials and Design, 81, 113–121. https://doi.org/10.1016/j.matdes.2015.05.027
  • Sohn, S. S., Kwiatkowski da Silva, A., Ikeda, Y., Körmann, F., Lu, W., Choi, W. S., Gault, B., Ponge, D., Neugebauer, J., & Raabe, D. (2019). Ultrastrong Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion. Advanced Materials, 31(8), 1–8. https://doi.org/10.1002/adma.201807142
  • Takeuchi, A., & Inoue, A. (2005). Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 46(12), 2817–2829. https://doi.org/10.2320/matertrans.46.2817
  • Tokarewicz, M., & Grądzka-Dahlke, M. (2021). Review of Recent Research on AlCoCrFeNi High-Entropy Alloy. Metals 2021, Vol. 11, Page 1302, 11(8), 1302. https://doi.org/10.3390/MET11081302
  • Tong, C. J., Chen, Y. L., Chen, S. K., Yeh, J. W., Shun, T. T., Tsau, C. H., Lin, S. J., & Chang, S. Y. (2005). Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 36(4), 881–893. https://doi.org/10.1007/S11661-005-0283-0/METRICS
  • Tripathy, S., Gupta, G., & Chowdhury, S. G. (2018). High Entropy Alloys: Criteria for Stable Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 49(1), 7–17. https://doi.org/10.1007/s11661-017-4388-z
  • Wang, F. J., Zhang, Y., & Chen, G. L. (2009). Atomic packing efficiency and phase transition in a high entropy alloy. Journal of Alloys and Compounds, 478(1–2), 321–324.
  • Wang, W. R., Wang, W. L., Wang, S. C., Tsai, Y. C., Lai, C. H., & Yeh, J. W. (2012a). Effects of Al addition on the microstructure and mechanical property of Al xCoCrFeNi high-entropy alloys. Intermetallics, 26, 44–51. https://doi.org/10.1016/j.intermet.2012.03.005
  • Wang, X. J., Xu, M., Liu, N., & Liu, L. X. (2021). The formation of sigma phase in the CoCrFeNi high-entropy alloys. Materials Research Express, 8(7). https://doi.org/10.1088/2053-1591/ac0a5c
  • Wang, Y. P., Li, B. S., Ren, M. X., Yang, C., & Fu, H. Z. (2008). Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 491(1–2), 154–158.
  • Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., & Wang, Y. (2015). Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Materials Science and Engineering A, 648, 15–22. https://doi.org/10.1016/j.msea.2015.09.034
  • Yang, X., & Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2–3), 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
  • Yeh, J. W. (2006). Recent progress in high-entropy alloys. Annales de Chimie: Science des Materiaux, 31(6), 633–648. https://doi.org/10.3166/acsm.31.633-648
  • Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303. https://doi.org/10.1002/adem.200300567
  • Zhang, L., Zhou, Y., Jin, X., Du, X., & Li, B. (2018). Precipitation-hardened high entropy alloys with excellent tensile properties. Materials Science and Engineering A, 732, 186–191. https://doi.org/10.1016/j.msea.2018.06.102

INFLUENCE OF Al CONTENT ON STRUCTURAL AND MECHANICAL PROPERTIES OF (CoCrFe)60AlXNi(40-X) HIGH ENTROPY ALLOY

Year 2023, Volume: 26 Issue: 4, 812 - 822, 03.12.2023
https://doi.org/10.17780/ksujes.1279081

Abstract

In this study, (CoCrFe)60AlxNi(40-x) (x=5, 10, 20, 30 at. %) alloys with different aluminum content were produced by arc melting method and casted into a 4 mm diameter cylindrical copper mold. The cylindrical alloys were structurally examined by XRD and SEM to investigate the effects of varying ratios of Al and Ni elements on the crystal structure, microstructure, and mechanical properties. The phases in the alloys determined by Thermo-Calc software and thermodynamic approaches were compared with the experimental results. The alloys were subjected to hardness and compression tests to determine mechanical properties. Experimental results showed that the crystal structure of the alloy shifted from FCC to BCC with increasing Al content from 5 at.% to 30 at.%. However, the increasing Al content caused the formation of some AlNi intermetallic phases in the microstructure. Both the change of the crystal structure and the formation of intermetallic phases with the rise of the Al ratio increase the hardness and yield strength of the alloy from 146±3 HV to 563±6 HV, from 193 MPa to 1260 MPa, respectively. Structural analyses and mechanical tests showed that (CoCrFe)60Al20Ni20 HEA is the most promising alloy in terms of strength and ductility trade-off.

References

  • Beyramali Kivy, M., Asle Zaeem, M., & Lekakh, S. (2017). Investigating phase formations in cast AlFeCoNiCu high entropy alloys by combination of computational modeling and experiments. Materials and Design, 127(February), 224–232. https://doi.org/10.1016/j.matdes.2017.04.086
  • Bönisch, M., Wu, Y., & Sehitoglu, H. (2018). Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature. Scientific Reports 2018 8:1, 8(1), 1–9. https://doi.org/10.1038/s41598-018-28784-1
  • Cai, Y., Ao, S., Marwana Manladan, S., Xue, J., & Luo, Z. (2019). Evolution mechanisms of TiC ceramic particles in FeCoCrNiAl high-entropy alloy laser cladding layers. Materials Research Express, 6(10), 1065d2. https://doi.org/10.1088/2053-1591/AB405D
  • Cai, Y., Zhu, L., Cui, Y., Geng, K., Marwana Manladan, S., & Luo, Z. (2019). High-temperature oxidation behavior of FeCoCrNiAlx high-entropy alloy coatings. Materials Research Express, 6(12), 126552. https://doi.org/10.1088/2053-1591/AB562D
  • Diao, H., Ma, D., Feng, R., Liu, T., Pu, C., Zhang, C., Guo, W., Poplawsky, J. D., Gao, Y., & Liaw, P. K. (2019). Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility. Materials Science and Engineering A, 742, 636–647. https://doi.org/10.1016/j.msea.2018.11.055
  • Geanta, V., Voiculescu, I., Milosan, I., Istrate, B., & Mates, I. M. (2018). Chemical composition influence on microhardness, microstructure and phase morphology of AlxCrFeCoNi high entropy alloys. Revista de Chimie, 69(4), 798–801.
  • George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature Reviews Materials 2019 4:8, 4(8), 515–534. https://doi.org/10.1038/s41578-019-0121-4
  • Guo, S., Ng, C., & Liu, C. T. (2013). Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys. Journal of Alloys and Compounds, 557, 77–81. https://doi.org/10.1016/j.jallcom.2013.01.007
  • Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10), 103505. https://doi.org/10.1063/1.3587228
  • Han, Q. (2008). Shrinkage Porosity and Gas Porosity. Içinde S. Viswanathan, D. Apelian, R. J. Donahue, B. DasGupta, M. Gywn, J. L. Jorstad, R. W. Monroe, M. Sahoo, T. E. Prucha, & D. Twarog (Ed.), Casting (C. 15, s. 0). ASM International. https://doi.org/10.31399/asm.hb.v15.a0005222
  • Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., & Fabijanic, D. M. (2015). Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Materials Science and Engineering: A, 633, 184–193.
  • Kao, Y.-F., Chen, T.-J., Chen, S.-K., & Yeh, J.-W. (2009). Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57–64.
  • Li, C., Li, J. C., Zhao, M., & Jiang, Q. (2009). Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 475(1–2), 752–757. https://doi.org/10.1016/j.jallcom.2008.07.124
  • Li, C., Li, J. C., Zhao, M., & Jiang, Q. (2010). Effect of aluminum contents on microstructure and properties of Al xCoCrFeNi alloys. Journal of Alloys and Compounds, 504(SUPPL. 1). https://doi.org/10.1016/J.JALLCOM.2010.03.111
  • Li, Z., Zhao, S., Ritchie, R. O., & Meyers, M. A. (2019). Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 102(March 2018), 296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003
  • Lim, S. J., & Huh, H. (2022). Ductile fracture behavior of BCC and FCC metals at a wide range of strain rates. International Journal of Impact Engineering, 159, 104050. https://doi.org/10.1016/J.IJIMPENG.2021.104050
  • Liu, J., Wang, X., Singh, A. P., Xu, H., Kong, F., & Yang, F. (2021). The evolution of intermetallic compounds in high-entropy alloys: From the secondary phase to the main phase. Metals, 11(12). https://doi.org/10.3390/met11122054
  • Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., & Wanderka, N. (2013). Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy, 132, 212–215. https://doi.org/10.1016/J.ULTRAMIC.2012.12.015
  • Miracle, D. B., Miller, J. D., Senkov, O. N., Woodward, C., Uchic, M. D., & Tiley, J. (2014). Exploration and Development of High Entropy Alloys for Structural Applications. Entropy 2014, Vol. 16, Pages 494-525, 16(1), 494–525. https://doi.org/10.3390/E16010494
  • Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511. https://doi.org/10.1016/j.actamat.2016.08.081
  • Murty, B. S., Yeh, J. W., Ranganathan, S., & Bhattacharjee, P. P. (2019). High-entropy alloys: basic concepts. Içinde High-Entropy Alloys (ss. 13–30). Elsevier. https://doi.org/10.1016/B978-0-12-816067-1.00002-3
  • Polat, G., Erdal, Z. A., & Kalay, Y. E. (2020). Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys. Journal of Materials Engineering and Performance, 29(5), 2898–2908. https://doi.org/10.1007/s11665-020-04830-w
  • Polat, G., Teki̇n, M., & Kotan, H. (2022). Role of yttrium addition and annealing temperature on thermal stability and hardness of nanocrystalline CoCrFeNi high entropy alloy. Intermetallics, 146(May), 107589. https://doi.org/10.1016/j.intermet.2022.107589
  • Shiratori, H., Fujieda, T., Yamanaka, K., Koizumi, Y., Kuwabara, K., Kato, T., & Chiba, A. (2016). Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Materials Science and Engineering A, 656, 39–46. https://doi.org/10.1016/j.msea.2016.01.019
  • Sistla, H. R., Newkirk, J. W., & Frank Liou, F. (2015). Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2-x (x=0.3, 1) high entropy alloys. Materials and Design, 81, 113–121. https://doi.org/10.1016/j.matdes.2015.05.027
  • Sohn, S. S., Kwiatkowski da Silva, A., Ikeda, Y., Körmann, F., Lu, W., Choi, W. S., Gault, B., Ponge, D., Neugebauer, J., & Raabe, D. (2019). Ultrastrong Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion. Advanced Materials, 31(8), 1–8. https://doi.org/10.1002/adma.201807142
  • Takeuchi, A., & Inoue, A. (2005). Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 46(12), 2817–2829. https://doi.org/10.2320/matertrans.46.2817
  • Tokarewicz, M., & Grądzka-Dahlke, M. (2021). Review of Recent Research on AlCoCrFeNi High-Entropy Alloy. Metals 2021, Vol. 11, Page 1302, 11(8), 1302. https://doi.org/10.3390/MET11081302
  • Tong, C. J., Chen, Y. L., Chen, S. K., Yeh, J. W., Shun, T. T., Tsau, C. H., Lin, S. J., & Chang, S. Y. (2005). Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 36(4), 881–893. https://doi.org/10.1007/S11661-005-0283-0/METRICS
  • Tripathy, S., Gupta, G., & Chowdhury, S. G. (2018). High Entropy Alloys: Criteria for Stable Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 49(1), 7–17. https://doi.org/10.1007/s11661-017-4388-z
  • Wang, F. J., Zhang, Y., & Chen, G. L. (2009). Atomic packing efficiency and phase transition in a high entropy alloy. Journal of Alloys and Compounds, 478(1–2), 321–324.
  • Wang, W. R., Wang, W. L., Wang, S. C., Tsai, Y. C., Lai, C. H., & Yeh, J. W. (2012a). Effects of Al addition on the microstructure and mechanical property of Al xCoCrFeNi high-entropy alloys. Intermetallics, 26, 44–51. https://doi.org/10.1016/j.intermet.2012.03.005
  • Wang, X. J., Xu, M., Liu, N., & Liu, L. X. (2021). The formation of sigma phase in the CoCrFeNi high-entropy alloys. Materials Research Express, 8(7). https://doi.org/10.1088/2053-1591/ac0a5c
  • Wang, Y. P., Li, B. S., Ren, M. X., Yang, C., & Fu, H. Z. (2008). Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 491(1–2), 154–158.
  • Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., & Wang, Y. (2015). Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Materials Science and Engineering A, 648, 15–22. https://doi.org/10.1016/j.msea.2015.09.034
  • Yang, X., & Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2–3), 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
  • Yeh, J. W. (2006). Recent progress in high-entropy alloys. Annales de Chimie: Science des Materiaux, 31(6), 633–648. https://doi.org/10.3166/acsm.31.633-648
  • Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303. https://doi.org/10.1002/adem.200300567
  • Zhang, L., Zhou, Y., Jin, X., Du, X., & Li, B. (2018). Precipitation-hardened high entropy alloys with excellent tensile properties. Materials Science and Engineering A, 732, 186–191. https://doi.org/10.1016/j.msea.2018.06.102
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Materials Science and Engineering
Authors

Gökhan Polat 0000-0003-0143-900X

Tuğba Selcen Atalay Kalsen 0000-0001-5763-9196

Publication Date December 3, 2023
Submission Date April 7, 2023
Published in Issue Year 2023Volume: 26 Issue: 4

Cite

APA Polat, G., & Atalay Kalsen, T. S. (2023). Al İÇERİĞİNİN (CoCrFe)60AlXNi(40-X) YÜKSEK ENTROPİLİ ALAŞIMININ YAPISAL VE MEKANİK ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 812-822. https://doi.org/10.17780/ksujes.1279081