Review
BibTex RIS Cite

PORTABLE ELECTROSPINNING DEVICES DEVELOPED FOR TISSUE ENGINEERING APPLICATIONS

Year 2023, Volume: 26 Issue: 4, 1061 - 1077, 03.12.2023
https://doi.org/10.17780/ksujes.1323114

Abstract

This article brings together current developments in portable electrospinning technology, focusing on tissue engineering applications. Electrospinning is a method used for the production of nanofibers and has gained significant interest in recent years. However, electrospinning devices are generally large and heavy, making them suitable only for use in laboratory settings. Therefore, portable electrospinning devices are of great importance for applications outside the laboratory, particularly in emergency medical situations requiring rapid and effective intervention, such as wound and burn treatment. It also shows promising results in the fields of skin regeneration and tissue engineering. This article will divide portable electrospinning devices into two main categories and examine examples from each category. The first category is portable electrospinning devices that work connected to the grid, and the second category is portable electrospinning devices that work on batteries. A detailed review is conducted on each category’s use and advantages of electrospinning devices. This article provides information on the use of portable electrospinning devices in tissue engineering application.

References

  • Acar, G. Ö. (2007). Doku Mühendisliği ve Hücre Kültürü Kaynaklı Yeni Tedavi Seçenekleri. Cerrahpaşa Tıp Dergisi, 38(1), 32-39.
  • Alharbi, A. R., Alarifi, I. M., Khan, W. S., & Asmatulu, R. (2016). Highly hydrophilic electrospun polyacrylonitrile/polyvinypyrrolidone nanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment. Journal of Membrane and Separation Technology, 5(2), 38-56.
  • Asmatulu, R., & Khan, W. S. (2018). Synthesis and applications of electrospun nanofibers. Elsevier. Bhushani, J. A., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 38(1), 21-33.
  • Brako, F., Luo, C., Craig, D. Q., & Edirisinghe, M. (2018). An Inexpensive, Portable Device for Point‐of‐Need Generation of Silver‐Nanoparticle Doped Cellulose Acetate Nanofibers for Advanced Wound Dressing. Macromolecular Materials and Engineering, 303(5), 1700586.
  • Chen, J.-P., Chang, G.-Y., & Chen, J.-K. (2008). Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and surfaces a: physicochemical and engineering aspects, 313, 183-188.
  • Chui, C.-Y., Mouthuy, P.-A., & Ye, H. (2018). Direct electrospinning of poly (vinyl butyral) onto human dermal fibroblasts using a portable device. Biotechnology letters, 40, 737-744.
  • Deng, X.-L., Sui, G., Zhao, M.-L., Chen, G.-Q., & Yang, X.-P. (2007). Poly (L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. Journal of Biomaterials Science, Polymer Edition, 18(1), 117-130.
  • Dong, R.-H., Jia, Y.-X., Qin, C.-C., Zhan, L., Yan, X., Cui, L., Zhou, Y., Jiang, X., & Long, Y.-Z. (2016). In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 8(6), 3482-3488.
  • Dong, R., Qin, C., Qiu, X., Yan, X., Yu, M., Cui, L., Zhou, Y., Zhang, H., Jiang, X., & Long, Y. (2015). In situ precision electrospinning as an effective delivery technique for cyanoacrylate medical glue with high efficiency and low toxicity. Nanoscale, 7(46), 19468-19475.
  • Dong, W.-H., Liu, J.-X., Mou, X.-J., Liu, G.-S., Huang, X.-W., Yan, X., Ning, X., Russell, S. J., & Long, Y.-Z. (2020). Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids and Surfaces B: Biointerfaces, 188, 110766.
  • Durmuş, F., Ekrem, M., & Gürol, Ö. (2017). Elektro-eğirme Yöntemiyle ÇCKNT Takviye Edilerek Güçlendirilmiş Naylon-6, 6 Nanoelyafların Üretimi ve Karakterizasyonu. El-Cezeri, 4(2), 146-155.
  • Ekren, N., & Karacan, C. E. (2022). Manufacturıng Of A Portable Electrospınnıng Gun For Bıomedıcal Applıcatıons. Revista Romana de Materiale, 52(3), 213-219.
  • Esentürk, İ., Erdal, M. S., & Güngör, S. (2016). Electrospinning method to produce drug-loaded nanofibers for topical/transdermal drug delivery applications. Journal of Faculty of Pharmacy of Istanbul University, 46(1), 49-69.
  • Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703.
  • Haik, J., Kornhaber, R., Blal, B., & Harats, M. (2017). The feasibility of a handheld electrospinning device for the application of nanofibrous wound dressings. Advances in wound care, 6(5), 166-174.
  • Huang, C., Chen, S., Lai, C., Reneker, D. H., Qiu, H., Ye, Y., & Hou, H. (2006). Electrospun polymer nanofibres with small diameters. Nanotechnology, 17(6), 1558.
  • Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63(15), 2223-2253.
  • Jiang, K., Long, Y.-Z., Chen, Z.-J., Liu, S.-L., Huang, Y.-Y., Jiang, X., & Huang, Z.-Q. (2014). Airflow-directed in situ electrospinning of a medical glue of cyanoacrylate for rapid hemostasis in liver resection. Nanoscale, 6(14), 7792-7798.
  • Karacan, C. E. (2019). Biyomedikal Uygulamaları Için Taşınabilir Elektroeğirme Sprey Tabancasının Tasarımı, Üretimi Ve Performansı Marmara Universitesi (Turkey)].
  • Kim, T. G., Lee, D. S., & Park, T. G. (2007). Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide). International journal of pharmaceutics, 338(1-2), 276-283.
  • Lau, W. K., Sofokleous, P., Day, R., Stride, E., & Edirisinghe, M. (2014). A portable device for in situ deposition of bioproducts. Bioinspired, Biomimetic and Nanobiomaterials, 3(2), 94-105.
  • Liu, G.-S., Yan, X., Yan, F.-F., Chen, F.-X., Hao, L.-Y., Chen, S.-J., Lou, T., Ning, X., & Long, Y.-Z. (2018). In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing. Nanoscale Research Letters, 13(1), 1-7.
  • Liu, X.-F., Zhang, J., Liu, J.-J., Zhou, Q.-H., Liu, Z., Hu, P.-Y., Yuan, Z., Ramakrishna, S., Yang, D.-P., & Long, Y.-Z. (2020). Bifunctional CuS composite nanofibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating superbug. Chemical Engineering Journal, 401, 126096.
  • Liu, Y., Ramaseshan, R., Dong, Y., Kumar, A., & Ramakrishna, S. (2010). A portable electrospinning apparatus. WO Patent App PCT/SG2008/000,444.
  • Long, Y.-Z., Zhang, J., Liu, Z., Wang, B.-C., Yu, M., & Ramakrishna, S. (2022). Application of Hand-Held Electrospinning Devices in Medicine. Electrospun Nanofibers: Principles, Technology and Novel Applications, 605-630.
  • Luo, W.-L., Zhang, J., Qiu, X., Chen, L.-J., Fu, J., Hu, P.-Y., Li, X., Hu, R.-J., & Long, Y.-Z. (2018). Electric-field-modified in situ precise deposition of electrospun medical glue fibers on the liver for rapid hemostasis. Nanoscale Research Letters, 13(1), 1-8.
  • Ma, Z., Kotaki, M., Yong, T., He, W., & Ramakrishna, S. (2005). Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials, 26(15), 2527-2536.
  • Maretschek, S., Greiner, A., & Kissel, T. (2008). Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. Journal of Controlled Release, 127(2), 180-187.
  • Mouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology letters, 37, 1107-1116.
  • Nanomedic’s Spincare. (2023). Retrieved 10.05.2023 from https://nanomedic.com/
  • Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387-2425.
  • Revia, R. A., Wagner, B. A., & Zhang, M. (2019). A portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomaterials, 9(9), 1317.
  • SalehHudin, H. S., Mohamad, E. N., Mahadi, W. N. L., & Muhammad Afifi, A. (2018). Multiple-jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes, 33(5), 479-498.
  • Santangelo, S. (2019). Electrospun nanomaterials for energy applications: Recent advances. Applied Sciences, 9(6), 1049.
  • Smith, D. J., Reneker, D. H., McManus, A. T., Schreuder-Gibson, H. L., Mello, C., & Sennett, M. S. (2004). Electrospun fibers and an apparatus therefor.
  • Sofokleous, P., Stride, E., Bonfield, W., & Edirisinghe, M. (2013). Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Materials Science and Engineering: C, 33(1), 213-223.
  • Suepueren, G., KANAT, Z. E., Ahmet, Ç., Kirci, T., Gueluemser, T., & TARAKÇIOĞLU, I. (2007). Nano fibres (Part 2). Textile and Apparel, 83-89.
  • Şimşek, M. (2018). Elektroeğirme Yöntemi ile Fibröz Doku İskelelerinin Üretimi. Natural and Applied Sciences Journal, 1(1), 31-34.
  • Teo, W.-E., Inai, R., & Ramakrishna, S. (2011). Technological advances in electrospinning of nanofibers. Science and technology of advanced materials.
  • Williams, G. R., Raimi-Abraham, B. T., & Luo, C. (2018). Nanofibres in drug delivery. UCL Press.
  • Xu, S.-C., Qin, C.-C., Yu, M., Dong, R.-H., Yan, X., Zhao, H., Han, W.-P., Zhang, H.-D., & Long, Y.-Z. (2015). A battery-operated portable handheld electrospinning apparatus. Nanoscale, 7(29), 12351-12355.
  • Yan, X., Yu, M., Ramakrishna, S., Russell, S. J., & Long, Y.-Z. (2019). Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale, 11(41), 19166-19178. Yan, X., Yu, M., Zhang, L.-H., Jia, X.-S., Li, J.-T., Duan, X.-P., Qin, C.-C., Dong, R.-H., & Long, Y.-Z. (2016). A portable electrospinning apparatus based on a small solar cell and a hand generator: design, performance and application. Nanoscale, 8(1), 209-213.
  • Zhang, J., Zhao, Y.-T., Hu, P.-Y., Liu, J.-J., Liu, X.-F., Hu, M., Cui, Z., Wang, N., Niu, Z., & Xiang, H.-F. (2020). Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation. Chemical Engineering Journal, 395, 125089.
  • Zhou, T., Wang, Y., Lei, F., & Yu, J. (2020). In-situ electrospinning for intestinal hemostasis. International Journal of Nanomedicine, 3869-3875.

DOKU MÜHENDİSLİĞİ UYGULAMALARI İÇİN GELİŞTİRİLEN TAŞINABİLİR ELEKTROEĞİRME CİHAZLARI

Year 2023, Volume: 26 Issue: 4, 1061 - 1077, 03.12.2023
https://doi.org/10.17780/ksujes.1323114

Abstract

Bu makale, doku mühendisliği uygulamalarına odaklanarak taşınabilir elektroeğirme teknolojisindeki mevcut gelişmeleri bir araya getirmektedir. Elektroeğirme, nanofiber üretimi için kullanılan bir yöntemdir ve son yıllarda büyük ilgi görmektedir. Ancak, elektroeğirme cihazları genellikle büyük ve ağır olduklarından sadece laboratuvar ortamında kullanılmaya elverişlidir. Bu nedenle yara ve yanık tedavisi gibi acil tıbbi müdahale gerektiren laboratuvar dışı uygulamalarda büyük önem taşımaktadır. Cilt yenilenmesi ve doku mühendisliği alanında da umut verici sonuçlar vermektedir. Bu makalede taşınabilir elektroeğirme cihazları iki ana kategoriye ayrılacak ve her bir bölüm ait örnekler incelenecektir. İlk kategori, şebekeye bağlı çalışan taşınabilir elektroeğirme cihazlarıdır. İkinci kategori, pille çalışan taşınabilir elektroeğirme cihazlarıdır. Her iki kategoriye ait elektroeğirme cihazlarının kullanımı ve avantajları hakkında detaylı bir inceleme yapılmaktadır. Ayrıca bu makale, taşınabilir elektroeğirme cihazlarının doku mühendisliği uygulamalarında kullanımına dair bilgi vermektedir.

References

  • Acar, G. Ö. (2007). Doku Mühendisliği ve Hücre Kültürü Kaynaklı Yeni Tedavi Seçenekleri. Cerrahpaşa Tıp Dergisi, 38(1), 32-39.
  • Alharbi, A. R., Alarifi, I. M., Khan, W. S., & Asmatulu, R. (2016). Highly hydrophilic electrospun polyacrylonitrile/polyvinypyrrolidone nanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment. Journal of Membrane and Separation Technology, 5(2), 38-56.
  • Asmatulu, R., & Khan, W. S. (2018). Synthesis and applications of electrospun nanofibers. Elsevier. Bhushani, J. A., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 38(1), 21-33.
  • Brako, F., Luo, C., Craig, D. Q., & Edirisinghe, M. (2018). An Inexpensive, Portable Device for Point‐of‐Need Generation of Silver‐Nanoparticle Doped Cellulose Acetate Nanofibers for Advanced Wound Dressing. Macromolecular Materials and Engineering, 303(5), 1700586.
  • Chen, J.-P., Chang, G.-Y., & Chen, J.-K. (2008). Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and surfaces a: physicochemical and engineering aspects, 313, 183-188.
  • Chui, C.-Y., Mouthuy, P.-A., & Ye, H. (2018). Direct electrospinning of poly (vinyl butyral) onto human dermal fibroblasts using a portable device. Biotechnology letters, 40, 737-744.
  • Deng, X.-L., Sui, G., Zhao, M.-L., Chen, G.-Q., & Yang, X.-P. (2007). Poly (L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. Journal of Biomaterials Science, Polymer Edition, 18(1), 117-130.
  • Dong, R.-H., Jia, Y.-X., Qin, C.-C., Zhan, L., Yan, X., Cui, L., Zhou, Y., Jiang, X., & Long, Y.-Z. (2016). In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 8(6), 3482-3488.
  • Dong, R., Qin, C., Qiu, X., Yan, X., Yu, M., Cui, L., Zhou, Y., Zhang, H., Jiang, X., & Long, Y. (2015). In situ precision electrospinning as an effective delivery technique for cyanoacrylate medical glue with high efficiency and low toxicity. Nanoscale, 7(46), 19468-19475.
  • Dong, W.-H., Liu, J.-X., Mou, X.-J., Liu, G.-S., Huang, X.-W., Yan, X., Ning, X., Russell, S. J., & Long, Y.-Z. (2020). Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids and Surfaces B: Biointerfaces, 188, 110766.
  • Durmuş, F., Ekrem, M., & Gürol, Ö. (2017). Elektro-eğirme Yöntemiyle ÇCKNT Takviye Edilerek Güçlendirilmiş Naylon-6, 6 Nanoelyafların Üretimi ve Karakterizasyonu. El-Cezeri, 4(2), 146-155.
  • Ekren, N., & Karacan, C. E. (2022). Manufacturıng Of A Portable Electrospınnıng Gun For Bıomedıcal Applıcatıons. Revista Romana de Materiale, 52(3), 213-219.
  • Esentürk, İ., Erdal, M. S., & Güngör, S. (2016). Electrospinning method to produce drug-loaded nanofibers for topical/transdermal drug delivery applications. Journal of Faculty of Pharmacy of Istanbul University, 46(1), 49-69.
  • Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703.
  • Haik, J., Kornhaber, R., Blal, B., & Harats, M. (2017). The feasibility of a handheld electrospinning device for the application of nanofibrous wound dressings. Advances in wound care, 6(5), 166-174.
  • Huang, C., Chen, S., Lai, C., Reneker, D. H., Qiu, H., Ye, Y., & Hou, H. (2006). Electrospun polymer nanofibres with small diameters. Nanotechnology, 17(6), 1558.
  • Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63(15), 2223-2253.
  • Jiang, K., Long, Y.-Z., Chen, Z.-J., Liu, S.-L., Huang, Y.-Y., Jiang, X., & Huang, Z.-Q. (2014). Airflow-directed in situ electrospinning of a medical glue of cyanoacrylate for rapid hemostasis in liver resection. Nanoscale, 6(14), 7792-7798.
  • Karacan, C. E. (2019). Biyomedikal Uygulamaları Için Taşınabilir Elektroeğirme Sprey Tabancasının Tasarımı, Üretimi Ve Performansı Marmara Universitesi (Turkey)].
  • Kim, T. G., Lee, D. S., & Park, T. G. (2007). Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide). International journal of pharmaceutics, 338(1-2), 276-283.
  • Lau, W. K., Sofokleous, P., Day, R., Stride, E., & Edirisinghe, M. (2014). A portable device for in situ deposition of bioproducts. Bioinspired, Biomimetic and Nanobiomaterials, 3(2), 94-105.
  • Liu, G.-S., Yan, X., Yan, F.-F., Chen, F.-X., Hao, L.-Y., Chen, S.-J., Lou, T., Ning, X., & Long, Y.-Z. (2018). In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing. Nanoscale Research Letters, 13(1), 1-7.
  • Liu, X.-F., Zhang, J., Liu, J.-J., Zhou, Q.-H., Liu, Z., Hu, P.-Y., Yuan, Z., Ramakrishna, S., Yang, D.-P., & Long, Y.-Z. (2020). Bifunctional CuS composite nanofibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating superbug. Chemical Engineering Journal, 401, 126096.
  • Liu, Y., Ramaseshan, R., Dong, Y., Kumar, A., & Ramakrishna, S. (2010). A portable electrospinning apparatus. WO Patent App PCT/SG2008/000,444.
  • Long, Y.-Z., Zhang, J., Liu, Z., Wang, B.-C., Yu, M., & Ramakrishna, S. (2022). Application of Hand-Held Electrospinning Devices in Medicine. Electrospun Nanofibers: Principles, Technology and Novel Applications, 605-630.
  • Luo, W.-L., Zhang, J., Qiu, X., Chen, L.-J., Fu, J., Hu, P.-Y., Li, X., Hu, R.-J., & Long, Y.-Z. (2018). Electric-field-modified in situ precise deposition of electrospun medical glue fibers on the liver for rapid hemostasis. Nanoscale Research Letters, 13(1), 1-8.
  • Ma, Z., Kotaki, M., Yong, T., He, W., & Ramakrishna, S. (2005). Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials, 26(15), 2527-2536.
  • Maretschek, S., Greiner, A., & Kissel, T. (2008). Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. Journal of Controlled Release, 127(2), 180-187.
  • Mouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology letters, 37, 1107-1116.
  • Nanomedic’s Spincare. (2023). Retrieved 10.05.2023 from https://nanomedic.com/
  • Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387-2425.
  • Revia, R. A., Wagner, B. A., & Zhang, M. (2019). A portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomaterials, 9(9), 1317.
  • SalehHudin, H. S., Mohamad, E. N., Mahadi, W. N. L., & Muhammad Afifi, A. (2018). Multiple-jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes, 33(5), 479-498.
  • Santangelo, S. (2019). Electrospun nanomaterials for energy applications: Recent advances. Applied Sciences, 9(6), 1049.
  • Smith, D. J., Reneker, D. H., McManus, A. T., Schreuder-Gibson, H. L., Mello, C., & Sennett, M. S. (2004). Electrospun fibers and an apparatus therefor.
  • Sofokleous, P., Stride, E., Bonfield, W., & Edirisinghe, M. (2013). Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Materials Science and Engineering: C, 33(1), 213-223.
  • Suepueren, G., KANAT, Z. E., Ahmet, Ç., Kirci, T., Gueluemser, T., & TARAKÇIOĞLU, I. (2007). Nano fibres (Part 2). Textile and Apparel, 83-89.
  • Şimşek, M. (2018). Elektroeğirme Yöntemi ile Fibröz Doku İskelelerinin Üretimi. Natural and Applied Sciences Journal, 1(1), 31-34.
  • Teo, W.-E., Inai, R., & Ramakrishna, S. (2011). Technological advances in electrospinning of nanofibers. Science and technology of advanced materials.
  • Williams, G. R., Raimi-Abraham, B. T., & Luo, C. (2018). Nanofibres in drug delivery. UCL Press.
  • Xu, S.-C., Qin, C.-C., Yu, M., Dong, R.-H., Yan, X., Zhao, H., Han, W.-P., Zhang, H.-D., & Long, Y.-Z. (2015). A battery-operated portable handheld electrospinning apparatus. Nanoscale, 7(29), 12351-12355.
  • Yan, X., Yu, M., Ramakrishna, S., Russell, S. J., & Long, Y.-Z. (2019). Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale, 11(41), 19166-19178. Yan, X., Yu, M., Zhang, L.-H., Jia, X.-S., Li, J.-T., Duan, X.-P., Qin, C.-C., Dong, R.-H., & Long, Y.-Z. (2016). A portable electrospinning apparatus based on a small solar cell and a hand generator: design, performance and application. Nanoscale, 8(1), 209-213.
  • Zhang, J., Zhao, Y.-T., Hu, P.-Y., Liu, J.-J., Liu, X.-F., Hu, M., Cui, Z., Wang, N., Niu, Z., & Xiang, H.-F. (2020). Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation. Chemical Engineering Journal, 395, 125089.
  • Zhou, T., Wang, Y., Lei, F., & Yu, J. (2020). In-situ electrospinning for intestinal hemostasis. International Journal of Nanomedicine, 3869-3875.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other), Materials Engineering (Other)
Journal Section Reviews
Authors

Merve Yılmaz 0009-0009-7584-1035

Nazmi Ekren 0000-0003-3530-9262

Publication Date December 3, 2023
Submission Date July 5, 2023
Published in Issue Year 2023Volume: 26 Issue: 4

Cite

APA Yılmaz, M., & Ekren, N. (2023). DOKU MÜHENDİSLİĞİ UYGULAMALARI İÇİN GELİŞTİRİLEN TAŞINABİLİR ELEKTROEĞİRME CİHAZLARI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 1061-1077. https://doi.org/10.17780/ksujes.1323114