Research Article
BibTex RIS Cite

A NUMERICAL ANALYSIS ON THE SUBMICRON- AND MICRON-SIZED PARTICLE SEDIMENTATION IN A WIRE-TO-PLATE ELECTROSTATIC PRECIPITATOR

Year 2024, Volume: 27 Issue: 1, 78 - 91, 03.03.2024
https://doi.org/10.17780/ksujes.1354863

Abstract

Electrostatic precipitators (ESPs) are frequently utilized in collecting fine organic and inorganic materials from continuous liquid with few moving parts and high efficiency using electrically charging the particles. In this study, cross-sectional 2D geometry of a wire-to-plate electrostatic precipitator the parametric data of which originally published elsewhere was numerically modeled and validated to investigate submicron-micron particle charging in terms of diffusion and field charging mechanisms and precipitation behavior of particles with detailed electric field properties. Electric field, gas flow, and particle trajectory equations are coupled and solved in a multiphysics solver. Particle tracking is realized with the Lagrangian approach. Results indicate variations in electric field strength and space charge density between corona electrodes, with space charge present in the entire precipitation channel. Between two different charging mechanisms, diffusion charging prevails for charge accumulated on submicron particles, whereas field charging becomes dominant for particles larger than 1μm diameter. However, for the ESP configuration considered in this study, particles reach a charge saturation in less than 0.7 seconds, regardless of their size. Although calculated precipitation efficiencies for micron-sized particles can reach to 100%, efficiencies for submicron particle range drop with increasing particle size, as diffusion charging rapidly loses its effectiveness, in 50-250nm range.

References

  • [1] White H.J. Industrial electrostatic precipitation, 1st ed. (1963), Reading, MA, USA: Addison-Wesley Pub. Co. ISBN-13: 978-0201086508
  • [2] Mizuno, A. Electrostatic precipitation. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 5 (2000), pp. 615-624. https://doi.org/10.1109/94.879357
  • [3] Marquard A., Kasper M., Meyer J., Kasper G. Nanoparticle charging efficiencies and related charging conditions in a wire-tube ESP at DC energization. Journal of Electrostatics, vol. 63, no. 1 (2005), pp. 693–698. http://dx.doi.org/10.1016/j.elstat.2005.03.032
  • [4] Y. Kawada, Y., Kaneko, T., Ito T., Chang, JS. Simultaneous removal of aerosol particles, NOx and SO2 from incense smokes by a DC wire-plate electrostatic precipitator under positive coronas. Journal of Aerosol Science, vol. 32, no. 1 (2001), pp. 945-946. http://dx.doi.org/10.1016/S0021-8502(21)00425-0
  • [5] Y. P. Raizer, Gas Discharge Physics, 1st ed., Heidelberg, Germany: Springer (1991), pp. 324-375. ISBN-13: 978-3642647604
  • [6] Bologa, A., Paur, HR., Seifert, H., Woletz, K. Influence of gas composition, temperature and pressure on corona discharge characteristics. International Journal of Plasma Environmental Science and Technology, vol. 5, no.1 (2011), pp. 110–116.
  • [7] Xu X., Gao X., Yan P., Zhu W., Zheng, C., Wang, Y. Particle migration and collection in a high-temperature electrostatic precipitator. Separation and Purification Technology, vol. 143, no. 1 (2015), pp. 184–191. http://dx.doi.org/10.1016/j.seppur.2015.01.016
  • [8] Xiao, G., Wang, X., Zhang, J., Ni, M., Gao, X., Cen, K. Characteristics of DC discharge in a wire-cylinder configuration at high ambient temperatures. Journal of Electrostatics, vol. 72, no. 1 (2014), pp. 13–21. http://dx.doi.org/10.1016/j.elstat.2013.10.013
  • [9] Xiao, G., Wang, X, Yang, G., Ni, M., Gao, X., Cen, K. An experimental investigation of electrostatic precipitation in a wire–cylinder configuration at high temperatures. Powder Technology, vol. 269, no. 1 (2015), pp. 166–177. https://doi.org/10.1016/j.powtec.2014.08.063
  • [10] Soldati, A. On The Effects of Electrohydrodynamic Flows and Turbulence on Aerosol Transport and Collection in Wire-Plate Electrostatic Precipitators, Journal of Aerosol Science. Vol. 31, No. 3 (2000), pp. 293-305. http://dx.doi.org/10.1016/S0021-8502(99)00055-5
  • [11] Kumar, A., Parihar, S., Hammer, T., Sridhar, G. Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas. Renewable Energy, vol: 74, no. 1 (2015), pp. 875-883. http://dx.doi.org/10.1016/j.renene.2014.09.006
  • [12] Nikas, KSP., Varonos, AA., Bergeles, GC. Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator. Journal of Electrostatics, vol 63, no. 5 (2005), pp. 423-443. http://dx.doi.org/10.1016/j.elstat.2004.12.005
  • [13] Gao, W., Wang, Y., Zhang, H., Guo, B., Zheng, C., Guo, J., Gao, X., Yu, A. Numerical simulation of particle migration in electrostatic precipitator with different electrode configurations. Powder Technology, vol. 361, no. 1 (2020), pp. 238-247. http://dx.doi.org/10.1016/j.powtec.2019.08.046
  • [14] Zhao, L., Adamiak, K. EHD Flow in Air Produced by Electric Corona Discharge in Pin-Plate Configuration. Journal of Electrostatics, 63 (2005), pp. 337–350. https://doi.org/10.1016/j.elstat.2004.06.003
  • [15] Böttner, C.U. The role of the space charge density in particulate processes in the example of the electrostatic precipitator. Powder Technology, vol. 136, no. 1 (2003), pp. 285-294. http://dx.doi.org/10.1016/j.powtec.2003.08.020
  • [16] Wang, X. Effects of corona wire distribution on characteristics of electrostatic precipitator. Powder Technology, vol. 366, no. 1 (2020), pp. 36-42. http://dx.doi.org/10.1016/j.powtec.2020.02.044
  • [17] Blazek, J. Chapter 7 – Turbulence Modeling. in Computational Fluid Dynamics: Principles and Applications, 3rd ed., Oxford, UK: Butterworth-Heinemann (2015), pp. 213-252. http://dx.doi.org/10.1016/B978-0-08-044506-9.X5000-0
  • [18] Gui, N., Jiang, S., Tu, J., Yang, X. Chapter 4 - Application in gas-particle flows. Gas-Particle and Granular Flow Systems, 1st ed., Amsterdam, The Netherlands: Elsevier (2020), pp. 123-205. http://dx.doi.org/10.1016/B978-0-12-816398-6.00013-4 [19] Durst, F., Milojevic, D., Schonung, B. Eulerian and Lagrangian predictions of particulate two-phase Flows: A numerical study. Applied Mathematical Modelling, vol. 8, no. 1 (1984), pp. 101-115. https://doi.org/10.1016/0307-904X(84)90062-3
  • [20] Xu, Z., Han, Z., Qu, H. Comparison between Lagrangian and Eulerian approaches for prediction of particle deposition in turbulent flows. Powder Technology, vol. 360, no. 1 (2020), pp. 141-150. https://doi.org/10.1016/j.powtec.2019.09.084
  • [21] Sun, Z., Zhu, J., Zhang, C., Numerical study on the hydrodynamics in high-density gas-solid circulating fluidized bed downer reactors. Powder Technology, vol. 370, no. 1 (2020), pp. 184-196. http://dx.doi.org/10.1016/j.powtec.2020.05.035
  • [22] Ma, C., Zhou, Y., Wang, J., Li, X. Numerical study on solar spouted bed reactor for conversion of biomass into hydrogen-rich gas by steam gasification. International Journal of Hydrogen Energy, vol. 45, no. 58 (2020), pp. 33136-33150. http://dx.doi.org/10.1016/j.ijhydene.2020.09.120
  • [23] Yang, S., Dong, R., Du, Y., Wang, S., Wang, H., Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics. Energy, vol. 214, no. 1 (2021), pp. 1-15. http://dx.doi.org/10.1016/j.energy.2020.118839
  • [24] Adeniji-Fashola, A., Chen, CP. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes. International Journal of Heat and Mass Transfer, vol: 33, no. 1 (1990), pp. 691-701. https://doi.org/10.1016/0017-9310(90)90168-T
  • [25] Li, L., Gopalakrishnan, R. An experimentally validated model of diffusion charging of arbitrary shaped aerosol particles. Journal of Aerosol Science, vol: 151, no. 1 (2021), pp. 1-28. http://dx.doi.org/10.1016/j.jaerosci.2020.105678
  • [26] Zhu, Y., Chen, C., Chen, M., Shi, J., Shangguan, W. Numerical simulation of electrostatic field and its influence on submicron particle charging in small-sized charger for consideration of voltage polarity. Powder Technology, vol: 380, no. 1 (2021), pp. 183-198. https://doi.org/10.1016/j.powtec.2020.11.042
  • [27] Lawless, PA. Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime. Journal of Aerosol Science, vol. 27, no. 2 (1996), pp. 191-215. https://doi.org/10.1016/0021-8502(95)00541-2
  • [28] Ramadhan, AA., Kapur, N., Summers, JL., Thompson, HM. Numerical development of EHD cooling systems for laptop applications. Applied Thermal Engineering, vol. 139, no. 1 (2018), pp. 144-156. http://dx.doi.org/10.1016/j.applthermaleng.2018.04.119
  • [29] Long, HGZ., Feng, Z., Lin, B., Yu, T. Numerical simulation of the characteristics of oil mist particles deposition in electrostatic precipitator. Process Safety and Environmental Protection, vol. 164, no. 1 (2022), pp. 335-344. http://dx.doi.org/10.1016/j.psep.2022.06.022   [30] Lu, Q., Yang, Z., Zheng, C., Li, X., Zhao, C., Xu, X., Gao, X., Luo, Z., Ni, M., Cen, K. Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator. Advanced Powder Technology, vol. 27, no. 5 (2016), pp. 1905-1911. http://dx.doi.org/10.1016/j.apt.2016.06.021
  • [31] Peek, F.W., Dielectric Phenomena in High-voltage Engineering (1929), McGraw-Hill Book Company, Inc. ISBN-13: 978-1443732321
  • [32] Cross, J. Electrostatics: Principles, Problems and Applications, 1st ed. (1987), Bristol, UK: CRC Press. ISBN-13: 978-0852745892
  • [33] Penney GW., Matick, RE. Potentials in D-C corona fields. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, vol. 79, no. 2 (1960), pp. 91-99. https://doi.org/10.1109/TCE.1960.6368550
  • [34] Choi, BS., Fletcher, CAJ. Turbulent particle dispersion in an electrostatic precipitator. Applied Mathematical Modelling, vol. 22, no. 12 (1998), pp. 1009-1021. https://doi.org/10.1016/S0307-904X(98)10034-3
  • [35] Lackowski, M., Krupa, A., Jaworek, A. Corona discharge ion sources for fine particle charging. Journal of Electrostatics, vol. 72, no. 2 (2010), pp. 377-382. http://dx.doi.org/10.1140/epjd/e2009-00309-0
  • [36] Zhang, K., Chen, S., Long, T., Xu, M., Zhang, H., Zhang, D. Study on Mechanism and Characteristics of Particle Charging in Electrostatic Precipitator. IOP Conference Series: Materials Science and Engineering, vol. 677, no. 1 (2019), pp. 1-8. http://dx.doi.org/10.1088/1757-899X/677/3/032109
  • [37] Byeon, JH., Hwang, J., Park, JH., Yoon, KY., Ko, BJ., Kang, SH., Ji, JH. Collection of submicron particles by an electrostatic precipitator using a dielectric barrier discharge. Journal of Aerosol Science, vol: 37, no. 11 (2006), pp. 1618-1628. http://dx.doi.org/10.1016/j.jaerosci.2006.05.003

TELDEN-PLAKAYA TÜRDE BİR ELEKTROSTATİK ÇÖKTÜRÜCÜDE MİKRONALTI- VE MİKRON-BOYUTLU PARTİKÜL BİRİKİMİNİN NÜMERİK ANALİZİ

Year 2024, Volume: 27 Issue: 1, 78 - 91, 03.03.2024
https://doi.org/10.17780/ksujes.1354863

Abstract

Elektrostatik çöktürücüler (ESP), küçük boyutlu organik ve inorganik maddelerin sürekli akışkan içerisinden elektriksel olarak yüklenmeleri suretiyle yüksek hassasiyetle ayrıştırılmalarında yararlanılan, yapılarında asgari hareketli aksam bulunduran cihazlardır. Bu çalışmada, deneysel verileri daha önce bir başka kaynakta yayınlanmış olan telden-plakaya tipteki elektrostatik çöktürücü sonlu elemanlar yöntemi ile 2 boyutlu kesit geometri olarak modellenmiş ve mikron- ve mikron-altı partiküllerin alansal ve difüzyon mekanizmaları ile elektriksel olarak yüklenmelerinin, ayrıca partikül çökelme davranışlarının detaylı elektrik alan özellikleri kapsamında incelenmesi amacıyla valide edilmiştir. Elektrik alan, gaz akışı ve partikül yörünge denklemleri bağlaşık hale getirilerek multifizik ortamında çözdürülmüştür. Partikül takibi Lagrange yaklaşımı ile modellenmiştir. Modelin sonuçları korona elektrotları arasında gerek elektrik alan kuvvetinde gerekse uzay yük yoğunluğunda kayda değer farklılıklar olduğunu ve uzay yükünün tüm çökelme kanalına yayıldığını ortaya koymaktadır. İki yüklenme mekanizmasından, difüzyon mekanizmasının mikron-altı partiküllerde oluşan yük birikiminde etkili iken alansal yüklenmenin daha ziyade 1μm’den daha büyük partiküllerde ön planda olmaktadır. Bununla birlikte, çalışma kapsamında dikkate alınmış olan ESP konfigürasyonunda partiküller 0.7 saniyeden kısa süre içerisinde elektriksel yük bakımından doygun hale gelmektedirler. Mikron boyutlu partiküllerin çökelme verimleri çapa bağlı olarak %100 mertebesine ulaşmakla birlikte mikron-altı partiküllerde artan partikül çapı ile difüzyon yüklenme mekanizması etkisini hızla kaybetmekte, dolayısıyla 50-250nm arasındaki partiküllerin çökelme verimlerinde önemli düşüş gözlenmektedir.

References

  • [1] White H.J. Industrial electrostatic precipitation, 1st ed. (1963), Reading, MA, USA: Addison-Wesley Pub. Co. ISBN-13: 978-0201086508
  • [2] Mizuno, A. Electrostatic precipitation. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 5 (2000), pp. 615-624. https://doi.org/10.1109/94.879357
  • [3] Marquard A., Kasper M., Meyer J., Kasper G. Nanoparticle charging efficiencies and related charging conditions in a wire-tube ESP at DC energization. Journal of Electrostatics, vol. 63, no. 1 (2005), pp. 693–698. http://dx.doi.org/10.1016/j.elstat.2005.03.032
  • [4] Y. Kawada, Y., Kaneko, T., Ito T., Chang, JS. Simultaneous removal of aerosol particles, NOx and SO2 from incense smokes by a DC wire-plate electrostatic precipitator under positive coronas. Journal of Aerosol Science, vol. 32, no. 1 (2001), pp. 945-946. http://dx.doi.org/10.1016/S0021-8502(21)00425-0
  • [5] Y. P. Raizer, Gas Discharge Physics, 1st ed., Heidelberg, Germany: Springer (1991), pp. 324-375. ISBN-13: 978-3642647604
  • [6] Bologa, A., Paur, HR., Seifert, H., Woletz, K. Influence of gas composition, temperature and pressure on corona discharge characteristics. International Journal of Plasma Environmental Science and Technology, vol. 5, no.1 (2011), pp. 110–116.
  • [7] Xu X., Gao X., Yan P., Zhu W., Zheng, C., Wang, Y. Particle migration and collection in a high-temperature electrostatic precipitator. Separation and Purification Technology, vol. 143, no. 1 (2015), pp. 184–191. http://dx.doi.org/10.1016/j.seppur.2015.01.016
  • [8] Xiao, G., Wang, X., Zhang, J., Ni, M., Gao, X., Cen, K. Characteristics of DC discharge in a wire-cylinder configuration at high ambient temperatures. Journal of Electrostatics, vol. 72, no. 1 (2014), pp. 13–21. http://dx.doi.org/10.1016/j.elstat.2013.10.013
  • [9] Xiao, G., Wang, X, Yang, G., Ni, M., Gao, X., Cen, K. An experimental investigation of electrostatic precipitation in a wire–cylinder configuration at high temperatures. Powder Technology, vol. 269, no. 1 (2015), pp. 166–177. https://doi.org/10.1016/j.powtec.2014.08.063
  • [10] Soldati, A. On The Effects of Electrohydrodynamic Flows and Turbulence on Aerosol Transport and Collection in Wire-Plate Electrostatic Precipitators, Journal of Aerosol Science. Vol. 31, No. 3 (2000), pp. 293-305. http://dx.doi.org/10.1016/S0021-8502(99)00055-5
  • [11] Kumar, A., Parihar, S., Hammer, T., Sridhar, G. Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas. Renewable Energy, vol: 74, no. 1 (2015), pp. 875-883. http://dx.doi.org/10.1016/j.renene.2014.09.006
  • [12] Nikas, KSP., Varonos, AA., Bergeles, GC. Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator. Journal of Electrostatics, vol 63, no. 5 (2005), pp. 423-443. http://dx.doi.org/10.1016/j.elstat.2004.12.005
  • [13] Gao, W., Wang, Y., Zhang, H., Guo, B., Zheng, C., Guo, J., Gao, X., Yu, A. Numerical simulation of particle migration in electrostatic precipitator with different electrode configurations. Powder Technology, vol. 361, no. 1 (2020), pp. 238-247. http://dx.doi.org/10.1016/j.powtec.2019.08.046
  • [14] Zhao, L., Adamiak, K. EHD Flow in Air Produced by Electric Corona Discharge in Pin-Plate Configuration. Journal of Electrostatics, 63 (2005), pp. 337–350. https://doi.org/10.1016/j.elstat.2004.06.003
  • [15] Böttner, C.U. The role of the space charge density in particulate processes in the example of the electrostatic precipitator. Powder Technology, vol. 136, no. 1 (2003), pp. 285-294. http://dx.doi.org/10.1016/j.powtec.2003.08.020
  • [16] Wang, X. Effects of corona wire distribution on characteristics of electrostatic precipitator. Powder Technology, vol. 366, no. 1 (2020), pp. 36-42. http://dx.doi.org/10.1016/j.powtec.2020.02.044
  • [17] Blazek, J. Chapter 7 – Turbulence Modeling. in Computational Fluid Dynamics: Principles and Applications, 3rd ed., Oxford, UK: Butterworth-Heinemann (2015), pp. 213-252. http://dx.doi.org/10.1016/B978-0-08-044506-9.X5000-0
  • [18] Gui, N., Jiang, S., Tu, J., Yang, X. Chapter 4 - Application in gas-particle flows. Gas-Particle and Granular Flow Systems, 1st ed., Amsterdam, The Netherlands: Elsevier (2020), pp. 123-205. http://dx.doi.org/10.1016/B978-0-12-816398-6.00013-4 [19] Durst, F., Milojevic, D., Schonung, B. Eulerian and Lagrangian predictions of particulate two-phase Flows: A numerical study. Applied Mathematical Modelling, vol. 8, no. 1 (1984), pp. 101-115. https://doi.org/10.1016/0307-904X(84)90062-3
  • [20] Xu, Z., Han, Z., Qu, H. Comparison between Lagrangian and Eulerian approaches for prediction of particle deposition in turbulent flows. Powder Technology, vol. 360, no. 1 (2020), pp. 141-150. https://doi.org/10.1016/j.powtec.2019.09.084
  • [21] Sun, Z., Zhu, J., Zhang, C., Numerical study on the hydrodynamics in high-density gas-solid circulating fluidized bed downer reactors. Powder Technology, vol. 370, no. 1 (2020), pp. 184-196. http://dx.doi.org/10.1016/j.powtec.2020.05.035
  • [22] Ma, C., Zhou, Y., Wang, J., Li, X. Numerical study on solar spouted bed reactor for conversion of biomass into hydrogen-rich gas by steam gasification. International Journal of Hydrogen Energy, vol. 45, no. 58 (2020), pp. 33136-33150. http://dx.doi.org/10.1016/j.ijhydene.2020.09.120
  • [23] Yang, S., Dong, R., Du, Y., Wang, S., Wang, H., Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics. Energy, vol. 214, no. 1 (2021), pp. 1-15. http://dx.doi.org/10.1016/j.energy.2020.118839
  • [24] Adeniji-Fashola, A., Chen, CP. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes. International Journal of Heat and Mass Transfer, vol: 33, no. 1 (1990), pp. 691-701. https://doi.org/10.1016/0017-9310(90)90168-T
  • [25] Li, L., Gopalakrishnan, R. An experimentally validated model of diffusion charging of arbitrary shaped aerosol particles. Journal of Aerosol Science, vol: 151, no. 1 (2021), pp. 1-28. http://dx.doi.org/10.1016/j.jaerosci.2020.105678
  • [26] Zhu, Y., Chen, C., Chen, M., Shi, J., Shangguan, W. Numerical simulation of electrostatic field and its influence on submicron particle charging in small-sized charger for consideration of voltage polarity. Powder Technology, vol: 380, no. 1 (2021), pp. 183-198. https://doi.org/10.1016/j.powtec.2020.11.042
  • [27] Lawless, PA. Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime. Journal of Aerosol Science, vol. 27, no. 2 (1996), pp. 191-215. https://doi.org/10.1016/0021-8502(95)00541-2
  • [28] Ramadhan, AA., Kapur, N., Summers, JL., Thompson, HM. Numerical development of EHD cooling systems for laptop applications. Applied Thermal Engineering, vol. 139, no. 1 (2018), pp. 144-156. http://dx.doi.org/10.1016/j.applthermaleng.2018.04.119
  • [29] Long, HGZ., Feng, Z., Lin, B., Yu, T. Numerical simulation of the characteristics of oil mist particles deposition in electrostatic precipitator. Process Safety and Environmental Protection, vol. 164, no. 1 (2022), pp. 335-344. http://dx.doi.org/10.1016/j.psep.2022.06.022   [30] Lu, Q., Yang, Z., Zheng, C., Li, X., Zhao, C., Xu, X., Gao, X., Luo, Z., Ni, M., Cen, K. Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator. Advanced Powder Technology, vol. 27, no. 5 (2016), pp. 1905-1911. http://dx.doi.org/10.1016/j.apt.2016.06.021
  • [31] Peek, F.W., Dielectric Phenomena in High-voltage Engineering (1929), McGraw-Hill Book Company, Inc. ISBN-13: 978-1443732321
  • [32] Cross, J. Electrostatics: Principles, Problems and Applications, 1st ed. (1987), Bristol, UK: CRC Press. ISBN-13: 978-0852745892
  • [33] Penney GW., Matick, RE. Potentials in D-C corona fields. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, vol. 79, no. 2 (1960), pp. 91-99. https://doi.org/10.1109/TCE.1960.6368550
  • [34] Choi, BS., Fletcher, CAJ. Turbulent particle dispersion in an electrostatic precipitator. Applied Mathematical Modelling, vol. 22, no. 12 (1998), pp. 1009-1021. https://doi.org/10.1016/S0307-904X(98)10034-3
  • [35] Lackowski, M., Krupa, A., Jaworek, A. Corona discharge ion sources for fine particle charging. Journal of Electrostatics, vol. 72, no. 2 (2010), pp. 377-382. http://dx.doi.org/10.1140/epjd/e2009-00309-0
  • [36] Zhang, K., Chen, S., Long, T., Xu, M., Zhang, H., Zhang, D. Study on Mechanism and Characteristics of Particle Charging in Electrostatic Precipitator. IOP Conference Series: Materials Science and Engineering, vol. 677, no. 1 (2019), pp. 1-8. http://dx.doi.org/10.1088/1757-899X/677/3/032109
  • [37] Byeon, JH., Hwang, J., Park, JH., Yoon, KY., Ko, BJ., Kang, SH., Ji, JH. Collection of submicron particles by an electrostatic precipitator using a dielectric barrier discharge. Journal of Aerosol Science, vol: 37, no. 11 (2006), pp. 1618-1628. http://dx.doi.org/10.1016/j.jaerosci.2006.05.003
There are 35 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Orçun Ekin 0000-0002-6779-885X

Publication Date March 3, 2024
Submission Date September 4, 2023
Published in Issue Year 2024Volume: 27 Issue: 1

Cite

APA Ekin, O. (2024). A NUMERICAL ANALYSIS ON THE SUBMICRON- AND MICRON-SIZED PARTICLE SEDIMENTATION IN A WIRE-TO-PLATE ELECTROSTATIC PRECIPITATOR. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 78-91. https://doi.org/10.17780/ksujes.1354863