Research Article
BibTex RIS Cite

TABAKA SAYISI VE KALINLIĞININ GLULAM KİRİŞLERİN EĞİLME ÖZELLİKLERİ ÜZERİNE ETKİSİNİN DENEYSEL VE NÜMERİK OLARAK İNCELENMESİ

Year 2024, Volume: 27 Issue: 1, 141 - 150, 03.03.2024
https://doi.org/10.17780/ksujes.1366836

Abstract

Ahşap malzeme, birçok olumlu özelliği sebebiyle yapısal elemanlarda kullanılmaktadır. Son yıllarda ahşap kirişlerin mekanik özelliklerinin iyileştirilmesi için çelik levha ve fiber takviyeli polimerler (FRP) gibi malzemelerin kullanımı üzerine araştırmalar yapılmaktadır. Tabakalı lamine keresteler ahşap malzeden üretilmiş bir kompozit malzemedir. Tabakalı lamine keresteler, tabakaları belirli kurala göre konumlandırılmış, değişen mukavemet ve sertlikteki ahşap katmanlarından yapılmış karmaşık mühendislik bileşenleridir. Bu çalışmanın amacı, altı farklı boyuttaki ve çeşitli katman sayılarındaki ladin ağaçlarından yapılan tutkallı kirişlerin bükülme özelliklerinin araştırılmasıdır. Farklı kesitli kirişler 3 katlı ve 7 katlı olarak üretilmektedir. Kirişlerin 4 nokta eğilme testleri yapılarak maksimum yük taşıma kapasitesi, eğilme mukavemeti ve elastisite modülü değerleri deneysel olarak elde edilmiştir. Yapılan deneysel analizlerin yanısıra üretilen kirişlerin sonlu elemanlar analiz programı kullanılanarak sayısal modelleri oluşturulmuş ve statik analizleri yapılmıştır. Deneysel sonuçlarda, tabaka sayısı ve boyutu arttıkça kirişlerin eğilme özelliklerinin arttığı gözlemlenmiştir. Deneysel analiz ve nümerik analiz sonucunda elde edilen maksimum yük taşıma kapasitesi, eğilme dayanımı ve elastisite modülü değerlerinin birbirine çok yakın değerler verdiği belirlenmiştir. Sayısal analiz sonuçları, çeşitli katman sayısı ve kalınlıklarda üretilen kirişlerin simülasyonunun yapılabileceğini göstermiştir. Bu tip ahşap kirişler için deneysel analizler yerine nümerik modeller oluşturularak elde edilecek sonuçların yeterli olabileceği belirlenmiştir.

References

  • Beceren Oztürk, R. and Arioglu, N. (2010). Mechanical properties of laminated wood beams produced from Turkish pinus silvestris. ITU Journal/a, 5(2).
  • Di, J., Zuo, H., and Li, Y. (2022). Flexural performance of glulam strengthened with flax-fiber reinforced polymer composites. Wood Material Science & Engineering, 1-10.
  • Dietsch, P. and Tannert, T. (2015). Assessing the integrity of glued-laminated timber elements, Construction and Building Materials, 101, 1259–1270.
  • Falk, R.H. (2010). Wood as a sustainable building material, in: R.J. Ross (Ed.), Wood handbook-Wood as an engineering material.Centennial Edition, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI: U.S., p. 1.
  • Fossetti, M., Minafò, G. and Papia, M. (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords. Construction and Building Materials, 95, 54-64.
  • Gao, Y., Wu, Y., Zhu, X., Zhu, L., Yu, Z., and Wu, Y. (2015). Numerical analysis of the bending properties of cathay poplar glulam. Materials, 8(10), 7059-7073.
  • Güray, A., Kilic, M., Doğru, G. and Özer, M. (2003). The effects of applying force direction and glue types on the bending strength of laminated wood material produced from brown oak (Quercus Robur L.), Thecnolojy, 6(1), (1-9).
  • Hsissou, R., Benzidia, B., Hajjaji, N., Elharfi, A. (2018). Elaboration and electrochemical studies of the coating behavior of new pentafunctional epoxy polymer (pentaglycidyl ether pentabisphenol phosphorus) on E24 carbon steel in 3.5% NaCl. J Chem Technol Metall, 53, 898–905.
  • Kermani, A.. (1999). Structural Timber Design, Blackwell Science Ltd., Cambridge, pp. 82–83.
  • Kilinçarslan, Ş. and Simsek Turker, Y. (2019). The Effect of Different Parameters on Strength Properties of Glulam Timber Beams. ICCESEN-2019, Antalya-Turkey, 23-27.
  • Kilincarslan, Ş. and Simsek Türker, Y. (2020a). Physical-Mechanical Properties Variation with Strengthening Polymers. Acta Physica Polonica, A., 137.
  • Kilinçarslan, Ş. and Simsek Turker, Y. (2020b) Evaluation in terms of Sustainability of Wood Materials Reinforced with FRP. Journal of Technical Sciences, 10(1), 23-30. doi: 10.35354/tbed.615101
  • Kilinçarslan, Ş. and Simsek Turker, Y. (2022). Strengthening of solid beam with fiber reinforced polymers. Turkish Journal of Engineering, 7(3), 166-171. Doi: 10.31127/tuje.1026075
  • Kilincarslan, S., and Turker, Y. S. (2021). Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites. Composite Structures, 262, 113612.
  • Li, G., Zhao, R. and Zhang, W. (2022). Experimental research on axial compression performance of glulam columns reinforced by steel strips. Wood Material Science & Engineering, 1-14.
  • Moody, R.C. and TenWolde, A. (1999). Use of Wood in Buildings and Bridges Wood Handbook – Wood as an Engineering Material, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory Madison, pp. 16.
  • Nunnally, S.W. (2007). Construction Methods and Management, seventh ed., Pearson Prentice Hall, New Jersy, p. 295.
  • Ohuchi, T., Hermawan, A. and Fujimoto, N. (2013). An Experimental Study on Adhesive Condition with Sugi Block Specimen which Assumed Finger-joint by Block Shear Test. Journal of the Faculty of Agriculture ,Kyushu University, 58, 99–102.
  • Ohuchi, T., Murakami, Y. and Fujimoto, N. (2009). Evaluation of finger-jointed laminae for glulam timber by acoustic emission I. Development of jig for acoustic emission sensor installed to production line and its verification test. Journal of the Faculty of Agriculture ,Kyushu University, 54, 467–470.
  • Sahin, C. K. And Onay, B. (2020). Alternatıve WoodSpecies for Playgrounds Wood from Fruit Trees.Wood Research, 65(1), 149- 160.
  • Sahin, C., Topay, M. And Var, A. A. (2020). A Study onSome Wood Species for Landscape Applications:Surface Color, Hardness and Roughness Changes atOutdoor Conditions. WoodResearch,65(3),395-404
  • Sahin, H. T., Arslan, M. B., Korkut, S. And Sahin, C. (2011). Colour Changes of Heat‐Treated Woods of Red‐BudMaple, European Hophornbeam and Oak. ColorResearch & Application, 36(6), 462-466.
  • Sena-Cruz, J., Jorge, M., Branco, J.M. and Cunha, V.M.C.F. (2013). Bond between glulam and NSM CFRP laminates, Construction and Building Materials, 40, 260–269.
  • Stalnaker, J.J. and Harris, E.C. (1999). Structural Design in Wood, second ed., Massachusetts: Kluwer Academic Publishers, 11-12, 17-18, 157- 159,305.
  • Stark, N.M., Cai, Z. and Carll, C. (2010). Wood-based composite materials, panel products, glued-laminated timber, structural composite lumber, and wood–nonwood composite materials, in: R.J. Ross (Ed.), Wood handbook—Wood as an Engineering Material, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, U.S., pp. 11-1,11-2,11-17,11-20.
  • Thelandersson, S. (2003). Timber Engineering - General Introduction, in: S. Thelandersson, H.J. Larsen (Eds.), Timber Engineering, John Wiley & Sons Ltd., West Sussex, p. 7.
  • Tran, V.D. Oudjene, M. and Méausoone, P.J. (2015). Experimental and numerical analyses of the structural response of adhesively reconstituted beech timber beams, Composiste Structures, 119, 206–217.

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE EFFECT OF LAYER NUMBER AND THICKNESS ON THE BENDING PROPERTIES OF GLULAM BEAMS

Year 2024, Volume: 27 Issue: 1, 141 - 150, 03.03.2024
https://doi.org/10.17780/ksujes.1366836

Abstract

Wooden material is used in structural elements due to its many positive properties. Recent years have witnessed a surge in research directed toward enhancing the mechanical properties of wooden beams through the utilization of materials like steel plates and fiber reinforced polymers (FRP). Layered laminated timber, a composite material crafted from wood, serves as a testament to this endeavor. These laminated timbers constitute intricate engineering elements, fashioned from layers of wood characterized by distinct levels of strength and hardness, systematically arranged as per established guidelines. The present study is geared toward a comprehensive examination of the bending characteristics exhibited by glued beams, fashioned from spruce trees, encompassing six distinct sizes and varying layer counts. The manufacturing process yields beams with diverse cross-sectional profiles, including 3-layer and 7-layer variants. By performing 4-point bending tests of the beams, maximum load carrying capacity, bending strength, and elasticity modulus values were obtained experimentally. In addition to the experimental analyses, numerical models of the produced beams were created using the finite element analysis program, and static analyses were performed. In the experimental results, it was observed that the bending properties of the beams increased as the number and size of layers increased. It was determined that the maximum load carrying capacity, bending strength, and elasticity modulus values obtained as a result of experimental and numerical analysis were very close to each other. Numerical analysis results showed that beams produced with various number of layers and thicknesses can be simulated. It has been determined that the results obtained by creating numerical models instead of experimental analyses for this type of wooden beam may be sufficient.

References

  • Beceren Oztürk, R. and Arioglu, N. (2010). Mechanical properties of laminated wood beams produced from Turkish pinus silvestris. ITU Journal/a, 5(2).
  • Di, J., Zuo, H., and Li, Y. (2022). Flexural performance of glulam strengthened with flax-fiber reinforced polymer composites. Wood Material Science & Engineering, 1-10.
  • Dietsch, P. and Tannert, T. (2015). Assessing the integrity of glued-laminated timber elements, Construction and Building Materials, 101, 1259–1270.
  • Falk, R.H. (2010). Wood as a sustainable building material, in: R.J. Ross (Ed.), Wood handbook-Wood as an engineering material.Centennial Edition, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI: U.S., p. 1.
  • Fossetti, M., Minafò, G. and Papia, M. (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords. Construction and Building Materials, 95, 54-64.
  • Gao, Y., Wu, Y., Zhu, X., Zhu, L., Yu, Z., and Wu, Y. (2015). Numerical analysis of the bending properties of cathay poplar glulam. Materials, 8(10), 7059-7073.
  • Güray, A., Kilic, M., Doğru, G. and Özer, M. (2003). The effects of applying force direction and glue types on the bending strength of laminated wood material produced from brown oak (Quercus Robur L.), Thecnolojy, 6(1), (1-9).
  • Hsissou, R., Benzidia, B., Hajjaji, N., Elharfi, A. (2018). Elaboration and electrochemical studies of the coating behavior of new pentafunctional epoxy polymer (pentaglycidyl ether pentabisphenol phosphorus) on E24 carbon steel in 3.5% NaCl. J Chem Technol Metall, 53, 898–905.
  • Kermani, A.. (1999). Structural Timber Design, Blackwell Science Ltd., Cambridge, pp. 82–83.
  • Kilinçarslan, Ş. and Simsek Turker, Y. (2019). The Effect of Different Parameters on Strength Properties of Glulam Timber Beams. ICCESEN-2019, Antalya-Turkey, 23-27.
  • Kilincarslan, Ş. and Simsek Türker, Y. (2020a). Physical-Mechanical Properties Variation with Strengthening Polymers. Acta Physica Polonica, A., 137.
  • Kilinçarslan, Ş. and Simsek Turker, Y. (2020b) Evaluation in terms of Sustainability of Wood Materials Reinforced with FRP. Journal of Technical Sciences, 10(1), 23-30. doi: 10.35354/tbed.615101
  • Kilinçarslan, Ş. and Simsek Turker, Y. (2022). Strengthening of solid beam with fiber reinforced polymers. Turkish Journal of Engineering, 7(3), 166-171. Doi: 10.31127/tuje.1026075
  • Kilincarslan, S., and Turker, Y. S. (2021). Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites. Composite Structures, 262, 113612.
  • Li, G., Zhao, R. and Zhang, W. (2022). Experimental research on axial compression performance of glulam columns reinforced by steel strips. Wood Material Science & Engineering, 1-14.
  • Moody, R.C. and TenWolde, A. (1999). Use of Wood in Buildings and Bridges Wood Handbook – Wood as an Engineering Material, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory Madison, pp. 16.
  • Nunnally, S.W. (2007). Construction Methods and Management, seventh ed., Pearson Prentice Hall, New Jersy, p. 295.
  • Ohuchi, T., Hermawan, A. and Fujimoto, N. (2013). An Experimental Study on Adhesive Condition with Sugi Block Specimen which Assumed Finger-joint by Block Shear Test. Journal of the Faculty of Agriculture ,Kyushu University, 58, 99–102.
  • Ohuchi, T., Murakami, Y. and Fujimoto, N. (2009). Evaluation of finger-jointed laminae for glulam timber by acoustic emission I. Development of jig for acoustic emission sensor installed to production line and its verification test. Journal of the Faculty of Agriculture ,Kyushu University, 54, 467–470.
  • Sahin, C. K. And Onay, B. (2020). Alternatıve WoodSpecies for Playgrounds Wood from Fruit Trees.Wood Research, 65(1), 149- 160.
  • Sahin, C., Topay, M. And Var, A. A. (2020). A Study onSome Wood Species for Landscape Applications:Surface Color, Hardness and Roughness Changes atOutdoor Conditions. WoodResearch,65(3),395-404
  • Sahin, H. T., Arslan, M. B., Korkut, S. And Sahin, C. (2011). Colour Changes of Heat‐Treated Woods of Red‐BudMaple, European Hophornbeam and Oak. ColorResearch & Application, 36(6), 462-466.
  • Sena-Cruz, J., Jorge, M., Branco, J.M. and Cunha, V.M.C.F. (2013). Bond between glulam and NSM CFRP laminates, Construction and Building Materials, 40, 260–269.
  • Stalnaker, J.J. and Harris, E.C. (1999). Structural Design in Wood, second ed., Massachusetts: Kluwer Academic Publishers, 11-12, 17-18, 157- 159,305.
  • Stark, N.M., Cai, Z. and Carll, C. (2010). Wood-based composite materials, panel products, glued-laminated timber, structural composite lumber, and wood–nonwood composite materials, in: R.J. Ross (Ed.), Wood handbook—Wood as an Engineering Material, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, U.S., pp. 11-1,11-2,11-17,11-20.
  • Thelandersson, S. (2003). Timber Engineering - General Introduction, in: S. Thelandersson, H.J. Larsen (Eds.), Timber Engineering, John Wiley & Sons Ltd., West Sussex, p. 7.
  • Tran, V.D. Oudjene, M. and Méausoone, P.J. (2015). Experimental and numerical analyses of the structural response of adhesively reconstituted beech timber beams, Composiste Structures, 119, 206–217.
There are 27 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Civil Engineering
Authors

Yasemin Şimşek Türker 0000-0002-3080-0215

Şemsettin Kılınçarslan 0000-0001-8253-9357

Publication Date March 3, 2024
Submission Date September 26, 2023
Published in Issue Year 2024Volume: 27 Issue: 1

Cite

APA Şimşek Türker, Y., & Kılınçarslan, Ş. (2024). EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE EFFECT OF LAYER NUMBER AND THICKNESS ON THE BENDING PROPERTIES OF GLULAM BEAMS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 141-150. https://doi.org/10.17780/ksujes.1366836