Research Article
BibTex RIS Cite

A NOVEL STUDY ON THE SYNTHESIS, CHARACTERIZATION, AND PHOTOCATALYTIC ACTIVITY OF CeO2 NANOPARTICLES

Year 2024, Volume: 27 Issue: 1, 190 - 198, 03.03.2024
https://doi.org/10.17780/ksujes.1369994

Abstract

The discharge of untreated wastewater from unplanned industrial activities using dyes can cause serious environmental pollution and affect the aquatic environment. Semiconductor photocatalysis is a favorable technology widely used for degrading organic dyes in wastewater. This study dealt with the preparation of CeO2 nanoparticles via a simple precipitation technique. Information on the structural and morphological features of the developed CeO2 nanoparticles were determined using Fourier transform infrared with attenuated total reflectance (FTIR-ATR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) spectroscopic methods. The presence of the characteristic bands of CeO2 in the FTIR spectrum provided evidence of successful CeO2 formation. The calculated crystallite particle size utilizing the Scherrer equation was 10 nm. SEM images revealed that the morphology of CeO2 consisted of almost spherical particles with slight agglomeration. Brunauer-Emmett-Teller (BET) technique was also used to find out the specific surface area of CeO2 nanoparticles (11 m2/g). The efficiency of CeO2 nanoparticles was also confirmed in terms of their photocatalytic activity against Rhodamine B (Rh B) under UV-A light. The results indicated that CeO2 nanoparticles could be a promising catalyst candidate for industrial wastewater treatment.

References

  • Al-Buriahi, A. K., Al-Gheethi, A. A., Senthil Kumar, P., Radin Mohamed, R. M. S., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. doi:https://doi.org/10.1016/j.chemosphere.2021.132162
  • Al-Gheethi, A. A., Azhar, Q. M., Senthil Kumar, P., Yusuf, A. A., Al-Buriahi, A. K., Radin Mohamed, R. M. S., & Al-shaibani, M. M. (2022). Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere, 287, 132080. doi:https://doi.org/10.1016/j.chemosphere.2021.132080
  • Amalina, F., Abd Razak, A. S., Krishnan, S., Zularisam, A. W., & Nasrullah, M. (2022). A review of eco-sustainable techniques for the removal of Rhodamine B dye utilizing biomass residue adsorbents. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103267. doi:https://doi.org/10.1016/j.pce.2022.103267
  • Babitha, K. K., Priyanka, K. P., Sreedevi, A., Ganesh, S., & Varghese, T. (2014). Effect of 8MeV electron beam irradiation on the structural and optical properties of CeO2 nanoparticles. Materials Characterization, 98, 222-227. doi:https://doi.org/10.1016/j.matchar.2014.11.004
  • Cerrato, E., Calza, P., & Cristina Paganini, M. (2022). Photocatalytic reductive and oxidative ability study of pristine ZnO and CeO2-ZnO heterojunction impregnated with Cu2O. Journal of Photochemistry and Photobiology A: Chemistry, 427, 113775. doi:https://doi.org/10.1016/j.jphotochem.2022.113775
  • Chang, S., Jia, Y., Zeng, Y., Qian, F., Guo, L., Wu, S., Lu, J., & Han, Y. (2022). Effect of interaction between different CeO2 plane and platinum nanoparticles on catalytic activity of Pt/CeO2 in toluene oxidation. Journal of Rare Earths, 40(11), 1743-1750. doi:https://doi.org/10.1016/j.jre.2021.10.009
  • De Faria, L. A., & Trasatti, S. (1994). The point of zero charge of CeO2. Journal of Colloid and Interface Science, 167(2), 352-357. doi:https://doi.org/10.1006/jcis.1994.1370
  • Durodola, S. S., Akeremale, O. K., Ore, O. T., Bayode, A. A., Badamasi, H., & Olusola, J. A. (2023). A Review on nanomaterial as photocatalysts for degradation of organic pollutants. Journal of Fluorescence. doi:10.1007/s10895-023-03332-x
  • Hu, L., Yuan, H., Zou, L., Chen, F., & Hu, X. (2015). Adsorption and visible light-driven photocatalytic degradation of Rhodamine B in aqueous solutions by Ag@AgBr/SBA-15. Applied Surface Science, 355, 706-715. doi:https://doi.org/10.1016/j.apsusc.2015.04.166
  • Issarapanacheewin, S., Wetchakun, K., Phanichphant, S., Kangwansupamonkon, W., & Wetchakun, N. (2016). Photodegradation of organic dyes by CeO2/Bi2WO6 nanocomposite and its physicochemical properties investigation. Ceramics International, 42(14), 16007-16016. doi:https://doi.org/10.1016/j.ceramint.2016.07.108
  • Kurian, M. (2020). Cerium oxide based materials for water treatment – A review. Journal of Environmental Chemical Engineering, 8(5), 104439. doi:https://doi.org/10.1016/j.jece.2020.104439
  • Kusmierek, E. (2020). A CeO2 Semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A Review. Catalysts, 10(12), 1435. Retrieved from https://www.mdpi.com/2073-4344/10/12/1435
  • Linghu, X., Shu, Y., Liu, L., Zhao, Y., Zhang, J., Chen, Z., Shan, D., & Wang, B. (2023). Hydro/solvothermally synthesized bismuth tungstate nanocatalysts for enhanced photocatalytic degradation of dyes, antibiotics, and bacteria in wastewater: A review. Journal of Water Process Engineering, 54, 103994. doi:https://doi.org/10.1016/j.jwpe.2023.103994
  • Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, B., Qin, L., Liu, S., & Yang, L. (2021). Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104. doi:https://doi.org/10.1016/j.chemosphere.2021.130104
  • Ma, J., Xu, N., Luo, Y., Liu, Q., & Pu, Y. (2023). Defect generation and morphology transformation mechanism of CeO2 particles prepared by molten salt method. Ceramics International, 49(3), 4929-4943. doi:https://doi.org/10.1016/j.ceramint.2022.10.007
  • Ma, R., Zhang, S., Wen, T., Gu, P., Li, L., Zhao, G., Niu, F., Huang, Q, Tang, Z., & Wang, X. (2019). A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catalysis Today, 335, 20-30. doi:https://doi.org/10.1016/j.cattod.2018.11.016
  • Malleshappa, J., Nagabhushana, H., Prasad, B. D., Sharma, S. C., Vidya, Y. S., & Anantharaju, K. S. (2016). Structural, photoluminescence and thermoluminescence properties of CeO2 nanoparticles. Optik, 127(2), 855-861. doi:https://doi.org/10.1016/j.ijleo.2015.10.114
  • Nadjia, L., Abdelkader, E., Naceur, B., & Ahmed, B. (2018). CeO2 nanoscale particles: Synthesis, characterization and photocatalytic activity under UVA light irradiation. Journal of Rare Earths, 36(6), 575-587. doi:https://doi.org/10.1016/j.jre.2018.01.004
  • Pansambal, S., Oza, R., Borgave, S., Chauhan, A., Bardapurkar, P., Vyas, S., & Ghotekar, S. (2022). Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Applied Nanoscience. doi:10.1007/s13204-022-02574-8
  • Ramadan, R., & El-Masry, M. M. (2021). Comparative study between CeO2/Zno and CeO2/SiO2 nanocomposites for (Cr6+) heavy metal removal. Applied Physics A, 127(11), 876. doi:10.1007/s00339-021-05037-z
  • Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
  • Seeharaj, P., Kongmun, P., Paiplod, P., Prakobmit, S., Sriwong, C., Kim-Lohsoontorn, P., & Vittayakorn, N. (2019). Ultrasonically-assisted surface modified TiO2/rGO/CeO2 heterojunction photocatalysts for conversion of CO2 to methanol and ethanol. Ultrasonics Sonochemistry, 58, 104657. doi:https://doi.org/10.1016/j.ultsonch.2019.104657
  • Sharma, J., Sharma, S., & Soni, V. (2021). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. doi:https://doi.org/10.1016/j.rsma.2021.101802
  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). In Pure and Applied Chemistry (Vol. 57, pp. 603).
  • Solayman, H. M., Hossen, M. A., Abd Aziz, A., Yahya, N. Y., Leong, K. H., Sim, L. C., Monir, M.U., & Zoh, K.-D. (2023). Performance evaluation of dye wastewater treatment technologies: A review. Journal of Environmental Chemical Engineering, 11(3), 109610. doi:https://doi.org/10.1016/j.jece.2023.109610
  • Tran, D. P. H., Pham, M.-T., Bui, X.-T., Wang, Y.-F., & You, S.-J. (2022). CeO2 as a photocatalytic material for CO2 conversion: A review. Solar Energy, 240, 443-466. doi:https://doi.org/10.1016/j.solener.2022.04.051
  • Turkten, N. (2022). A novel low-cost photocatalyst: Preparation, characterization, and photocatalytic properties of CeO2-diatomite composites. Water, 14(21), 3373. Retrieved from https://www.mdpi.com/2073-4441/14/21/3373
  • Vivek, S., Arunkumar, P., & Babu, K. S. (2016). In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol. RSC Advances, 6(51), 45947-45956. doi:10.1039/C6RA04120E
  • Wu, H., Sun, Q., Chen, J., Wang, G.-Y., Wang, D., Zeng, X.-F., & Wang, J.-X. (2021). Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate. Chemical Engineering Journal, 425, 130640. doi:https://doi.org/10.1016/j.cej.2021.130640
  • Xie, L., Ren, Z., Zhu, P., Xu, J., Luo, D., & Lin, J. (2021). A novel CeO2–TiO2/PANI/NiFe2O4 magnetic photocatalyst: Preparation, characterization and photodegradation of tetracycline hydrochloride under visible light. Journal of Solid State Chemistry, 300, 122208. doi:https://doi.org/10.1016/j.jssc.2021.122208

CeO2 NANOTANECİKLERİNİN SENTEZİ, KARAKTERİZASYONU VE FOTOKATALİTİK AKTİVİTESİ

Year 2024, Volume: 27 Issue: 1, 190 - 198, 03.03.2024
https://doi.org/10.17780/ksujes.1369994

Abstract

Boya içeren endüstriyel atık suyunun yeterli bir arıtma işlemi yapılmadan boşaltılması sonucunda önemli çevre ve su kirliliği oluşabilir. Yarı iletken fotokataliz, atık sulardaki organik boyaların parçalanması amacıyla yaygın olarak kullanılan uygun bir teknolojidir. Bu çalışmada, CeO2 nanotanecikleri basit bir çöktürme yöntemi kullanılarak hazırlanmıştır. Fourier dönüşümlü kızılötesi spektroskopisi-zayıflatılmış toplam yansıma (FTIR-ATR), Raman spektroskopisi, X-ışını difraktometresi (XRD) ve taramalı elektron mikroskobu (SEM) yöntemleri kullanılarak CeO2 nanotaneciklerinin yapısal ve morfolojik özellikleri belirlenmiştir. FTIR spektrumunda yer alan karakteristik bandların varlığı CeO2 oluşumunun başarılı bir şekilde gerçekleştiğini göstermiştir. Scherrer eşitliği kullanılarak kristal tanecik boyutu 10 nm olarak hesaplanmıştır. SEM görüntüleri, CeO2’nin morfolojisinin yüzeyde çok az bir topaklanma olsa da neredeyse küresel taneciklerden oluştuğunu ortaya çıkarmıştır. Brunauer-Emmett-Teller (BET) yöntemi kullanılak CeO2 nanotaneciklerinin spesifik yüzey alanı (11 m2/g) belirlenmiştir. CeO2 nanotaneciklerinin etkinliği, UV ışığı altında Rhodamin B (Rh B) boyasına karşı fotokatalitik aktiviteleri incelenerek saptanmıştır. Elde edilen sonuçlar, CeO2 nanotaneciklerinin endüstriyel atıksu arıtımında kullanılabilecek, ileriye dönük ümit vaat eden bir katalizör olduğunu göstermiştir.

References

  • Al-Buriahi, A. K., Al-Gheethi, A. A., Senthil Kumar, P., Radin Mohamed, R. M. S., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. doi:https://doi.org/10.1016/j.chemosphere.2021.132162
  • Al-Gheethi, A. A., Azhar, Q. M., Senthil Kumar, P., Yusuf, A. A., Al-Buriahi, A. K., Radin Mohamed, R. M. S., & Al-shaibani, M. M. (2022). Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere, 287, 132080. doi:https://doi.org/10.1016/j.chemosphere.2021.132080
  • Amalina, F., Abd Razak, A. S., Krishnan, S., Zularisam, A. W., & Nasrullah, M. (2022). A review of eco-sustainable techniques for the removal of Rhodamine B dye utilizing biomass residue adsorbents. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103267. doi:https://doi.org/10.1016/j.pce.2022.103267
  • Babitha, K. K., Priyanka, K. P., Sreedevi, A., Ganesh, S., & Varghese, T. (2014). Effect of 8MeV electron beam irradiation on the structural and optical properties of CeO2 nanoparticles. Materials Characterization, 98, 222-227. doi:https://doi.org/10.1016/j.matchar.2014.11.004
  • Cerrato, E., Calza, P., & Cristina Paganini, M. (2022). Photocatalytic reductive and oxidative ability study of pristine ZnO and CeO2-ZnO heterojunction impregnated with Cu2O. Journal of Photochemistry and Photobiology A: Chemistry, 427, 113775. doi:https://doi.org/10.1016/j.jphotochem.2022.113775
  • Chang, S., Jia, Y., Zeng, Y., Qian, F., Guo, L., Wu, S., Lu, J., & Han, Y. (2022). Effect of interaction between different CeO2 plane and platinum nanoparticles on catalytic activity of Pt/CeO2 in toluene oxidation. Journal of Rare Earths, 40(11), 1743-1750. doi:https://doi.org/10.1016/j.jre.2021.10.009
  • De Faria, L. A., & Trasatti, S. (1994). The point of zero charge of CeO2. Journal of Colloid and Interface Science, 167(2), 352-357. doi:https://doi.org/10.1006/jcis.1994.1370
  • Durodola, S. S., Akeremale, O. K., Ore, O. T., Bayode, A. A., Badamasi, H., & Olusola, J. A. (2023). A Review on nanomaterial as photocatalysts for degradation of organic pollutants. Journal of Fluorescence. doi:10.1007/s10895-023-03332-x
  • Hu, L., Yuan, H., Zou, L., Chen, F., & Hu, X. (2015). Adsorption and visible light-driven photocatalytic degradation of Rhodamine B in aqueous solutions by Ag@AgBr/SBA-15. Applied Surface Science, 355, 706-715. doi:https://doi.org/10.1016/j.apsusc.2015.04.166
  • Issarapanacheewin, S., Wetchakun, K., Phanichphant, S., Kangwansupamonkon, W., & Wetchakun, N. (2016). Photodegradation of organic dyes by CeO2/Bi2WO6 nanocomposite and its physicochemical properties investigation. Ceramics International, 42(14), 16007-16016. doi:https://doi.org/10.1016/j.ceramint.2016.07.108
  • Kurian, M. (2020). Cerium oxide based materials for water treatment – A review. Journal of Environmental Chemical Engineering, 8(5), 104439. doi:https://doi.org/10.1016/j.jece.2020.104439
  • Kusmierek, E. (2020). A CeO2 Semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A Review. Catalysts, 10(12), 1435. Retrieved from https://www.mdpi.com/2073-4344/10/12/1435
  • Linghu, X., Shu, Y., Liu, L., Zhao, Y., Zhang, J., Chen, Z., Shan, D., & Wang, B. (2023). Hydro/solvothermally synthesized bismuth tungstate nanocatalysts for enhanced photocatalytic degradation of dyes, antibiotics, and bacteria in wastewater: A review. Journal of Water Process Engineering, 54, 103994. doi:https://doi.org/10.1016/j.jwpe.2023.103994
  • Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, B., Qin, L., Liu, S., & Yang, L. (2021). Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104. doi:https://doi.org/10.1016/j.chemosphere.2021.130104
  • Ma, J., Xu, N., Luo, Y., Liu, Q., & Pu, Y. (2023). Defect generation and morphology transformation mechanism of CeO2 particles prepared by molten salt method. Ceramics International, 49(3), 4929-4943. doi:https://doi.org/10.1016/j.ceramint.2022.10.007
  • Ma, R., Zhang, S., Wen, T., Gu, P., Li, L., Zhao, G., Niu, F., Huang, Q, Tang, Z., & Wang, X. (2019). A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catalysis Today, 335, 20-30. doi:https://doi.org/10.1016/j.cattod.2018.11.016
  • Malleshappa, J., Nagabhushana, H., Prasad, B. D., Sharma, S. C., Vidya, Y. S., & Anantharaju, K. S. (2016). Structural, photoluminescence and thermoluminescence properties of CeO2 nanoparticles. Optik, 127(2), 855-861. doi:https://doi.org/10.1016/j.ijleo.2015.10.114
  • Nadjia, L., Abdelkader, E., Naceur, B., & Ahmed, B. (2018). CeO2 nanoscale particles: Synthesis, characterization and photocatalytic activity under UVA light irradiation. Journal of Rare Earths, 36(6), 575-587. doi:https://doi.org/10.1016/j.jre.2018.01.004
  • Pansambal, S., Oza, R., Borgave, S., Chauhan, A., Bardapurkar, P., Vyas, S., & Ghotekar, S. (2022). Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Applied Nanoscience. doi:10.1007/s13204-022-02574-8
  • Ramadan, R., & El-Masry, M. M. (2021). Comparative study between CeO2/Zno and CeO2/SiO2 nanocomposites for (Cr6+) heavy metal removal. Applied Physics A, 127(11), 876. doi:10.1007/s00339-021-05037-z
  • Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
  • Seeharaj, P., Kongmun, P., Paiplod, P., Prakobmit, S., Sriwong, C., Kim-Lohsoontorn, P., & Vittayakorn, N. (2019). Ultrasonically-assisted surface modified TiO2/rGO/CeO2 heterojunction photocatalysts for conversion of CO2 to methanol and ethanol. Ultrasonics Sonochemistry, 58, 104657. doi:https://doi.org/10.1016/j.ultsonch.2019.104657
  • Sharma, J., Sharma, S., & Soni, V. (2021). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. doi:https://doi.org/10.1016/j.rsma.2021.101802
  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). In Pure and Applied Chemistry (Vol. 57, pp. 603).
  • Solayman, H. M., Hossen, M. A., Abd Aziz, A., Yahya, N. Y., Leong, K. H., Sim, L. C., Monir, M.U., & Zoh, K.-D. (2023). Performance evaluation of dye wastewater treatment technologies: A review. Journal of Environmental Chemical Engineering, 11(3), 109610. doi:https://doi.org/10.1016/j.jece.2023.109610
  • Tran, D. P. H., Pham, M.-T., Bui, X.-T., Wang, Y.-F., & You, S.-J. (2022). CeO2 as a photocatalytic material for CO2 conversion: A review. Solar Energy, 240, 443-466. doi:https://doi.org/10.1016/j.solener.2022.04.051
  • Turkten, N. (2022). A novel low-cost photocatalyst: Preparation, characterization, and photocatalytic properties of CeO2-diatomite composites. Water, 14(21), 3373. Retrieved from https://www.mdpi.com/2073-4441/14/21/3373
  • Vivek, S., Arunkumar, P., & Babu, K. S. (2016). In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol. RSC Advances, 6(51), 45947-45956. doi:10.1039/C6RA04120E
  • Wu, H., Sun, Q., Chen, J., Wang, G.-Y., Wang, D., Zeng, X.-F., & Wang, J.-X. (2021). Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate. Chemical Engineering Journal, 425, 130640. doi:https://doi.org/10.1016/j.cej.2021.130640
  • Xie, L., Ren, Z., Zhu, P., Xu, J., Luo, D., & Lin, J. (2021). A novel CeO2–TiO2/PANI/NiFe2O4 magnetic photocatalyst: Preparation, characterization and photodegradation of tetracycline hydrochloride under visible light. Journal of Solid State Chemistry, 300, 122208. doi:https://doi.org/10.1016/j.jssc.2021.122208
There are 30 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other)
Journal Section Environmental Engineering
Authors

Nazlı Türkten 0000-0001-9343-3697

Yunus Karataş 0000-0002-3826-463X

Publication Date March 3, 2024
Submission Date October 2, 2023
Published in Issue Year 2024Volume: 27 Issue: 1

Cite

APA Türkten, N., & Karataş, Y. (2024). A NOVEL STUDY ON THE SYNTHESIS, CHARACTERIZATION, AND PHOTOCATALYTIC ACTIVITY OF CeO2 NANOPARTICLES. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 190-198. https://doi.org/10.17780/ksujes.1369994