Bu çalışmada PA6 ve PA610 harmanlanmış ve bu karışıma özelliklerini iyileştirmek amacı ile cam elyaf (GF) ve lignin (LL) eklenmiştir. Kompozitler ekstrüzyon ve enjeksiyon kalıplama yöntemleriyle hazırlanmış ve morfolojik, ısıl (diferansiyel taramalı kalorimetre-DSC, termogravimetrik analiz-TGA) ve yanmazlık (sınırlayıcı oksijen indeksi-LOI, dikey yanma testi-UL-94, konik kalorimetre), özellikleri incelenmiştir. GF takviyeli kompozitte iyi bir arayüzey etkileşimi ve homojen dağılım gözlenirken, LL’nin matris ile etkileşiminin zayıf olduğu görülmüştür. GF matrisin ısıl karalılığını iyileştirmiş ve kalıntı miktarını yükseltmiştir. GF/LL kompozitlerinde ise LL ısıl dayanımı düşürse de kütle kayıp hızını yavaşlatmış ve kalıntı miktarını artırmıştır. GF ve LL ilavesi ile matrisin erime noktasında belirgin bir değişim olmazken LL kristalizasyon sıcaklığını düşürmüş ve dolayısıyla matrisin kristalinitesini büyük oranda azaltmıştır. Matrisin LOI değeri ve UL-94 sınıflandırmasında GF ilavesi ile bir gelişim olmazken, LL’nin yanma süresini belirgin bir şekilde kısalttığı gözlenmiştir. PA6/PA610’a eklenen GF ve LL matrisin maksimum ısı salınım hızı, toplam ısı salınım değerlerinde önemli ölçüde düşüş sağlayarak kompozitin yanmazlık özelliğini geliştirmiştir. Sonuç olarak bu çalışma GF takviyeli PA kompozitleri için ligninin etkin bir alev geciktirici olduğunu göstermiştir.
Arboleda-Clemente, L., Ares-Pernas, A., García-Fonte, X. X., & Abad, M. J. (2016). Water sorption of PA12/PA6/MWCNT composites with a segregated conductive network: structure–property relationships. Journal of Materials Science, 51(18), 8674–8686. https://doi.org/10.1007/s10853-016-0127-x
Artykbaeva, E., Ucpinar Durmaz, B., Aksoy, P., & Aytac, A. (2022). Investigation of the properties of PA6/PA610 blends and glass fiber reinforced PA6/PA610 composites. Polymer Composites, 43(10), 7514–7525. https://doi.org/10.1002/pc.26840
Cayla, A., Rault, F., Giraud, S., Salaün, F., Sonnier, R., & Dumazert, L. (2019). Influence of ammonium polyphosphate/lignin ratio on thermal and fire behavior of biobased thermoplastic: The case of Polyamide 11. Materials, 12(7). https://doi.org/10.3390/ma12071146
Chen, Y., Wang, Q., Yan, W., & Tang, H. (2006). Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polymer Degradation and Stability, 91(11), 2632–2643. https://doi.org/10.1016/j.polymdegradstab.2006.05.002
Fabbri, F., Bischof, S., Mayr, S., Gritsch, S., Jimenez Bartolome, M., Schwaiger, N., Guebitz, G.M., & Weiss, R. (2023). The Biomodified Lignin Platform: A Review. Polymers, 15(7). https://doi.org/10.3390/polym15071694
Koruyucu, A., & Balaban, F. Ç. (2021). Muz kabuğu ekstraktının pamuk ve pamuk-poliester karışımlı kumaşlarda güç tutuşurluğa etkisinin incelenmesi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 24(2), 66–82.
Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G., & Guan, J. (2017). Thermal Stability and Fire Retardant Properties of Polyamide 11 Microcomposites Containing Different Lignins. Industrial and Engineering Chemistry Research, 56(46), 13704–13714. https://doi.org/10.1021/acs.iecr.7b03085
Marset, D., Dolza, C., Fages, E., Gonga, E., Gutiérrez, O., Gomez-Caturla, J., Ivorra-Martinez, J., Sanchez-Nacher, L., & Quiles-Carrillo, L. (2020). The effect of halloysite nanotubes on the fire retardancy properties of partially biobased polyamide 610. Polymers, 12(12), 1–21. https://doi.org/10.3390/polym12123050
Moran, C. S., Barthelon, A., Pearsall, A., Mittal, V., & Dorgan, J. R. (2016). Biorenewable blends of polyamide-4,10 and polyamide-6,10. Journal of Applied Polymer Science, 133(45). https://doi.org/10.1002/app.43626
Nurazzi, N. M., Khalina, A., Sapuan, S. M., Ilyas, R. A., Rafiqah, S. A., & Hanafee, Z. M. (2020). Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. Journal of Materials Research and Technology, 9(2), 1606–1618. https://doi.org/10.1016/j.jmrt.2019.11.086
Otaegi, I., Aramburu, N., Müller, A. J., & Guerrica-Echevarría, G. (2018). Novel biobased polyamide 410/polyamide 6/CNT nanocomposites. Polymers, 10(9), 1–18. https://doi.org/10.3390/polym10090986
Özdemir, F., & Özğan, A. O. (2023). Yumurta kabuğu içeriğinin odun plastik kompozit malzemenin yanma dayanımı üzerine etkisi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 26(1), 98–107.
Pagacz, J., Raftopoulos, K. N., Leszczyńska, A., & Pielichowski, K. (2016). Bio-polyamides based on renewable raw materials: Glass transition and crystallinity studies. Journal of Thermal Analysis and Calorimetry, 123(2), 1225–1237. https://doi.org/10.1007/s10973-015-4929-x
Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers, 13(21). https://doi.org/10.3390/polym13213721
Ruehle, D. A., Perbix, C., Castañeda, M., Dorgan, J. R., Mittal, V., Halley, P., & Martin, D. (2013). Blends of biorenewable polyamide-11 and polyamide-6,10. Polymer, 54(26), 6961–6970. https://doi.org/10.1016/j.polymer.2013.10.013
Safari, M., Otaegi, I., Aramburu, N., Wang, Y., Liu, G., Dong, X., Wang, D., Guerrica-Echevarria, G., & Müller, A. J. (2021). Composition dependent miscibility in the crystalline state of polyamide 6 /polyamide 4,10 blends: From single to double crystalline blends. Polymer, 219(February), 123570. https://doi.org/10.1016/j.polymer.2021.123570
Sallem-Idrissi, N., Van Velthem, P., & Sclavons, M. (2018). Fully Bio-Sourced Nylon 11/Raw Lignin Composites: Thermal and Mechanical Performances. Journal of Polymers and the Environment, 26(12), 4405–4414. https://doi.org/10.1007/s10924-018-1311-7
Shi, Y. (2016). Phase behavior of polyamide 6/612 blends. Plastics Engineering, 72(4), 46–49. https://doi.org/10.1002/j.1941-9635.2016.tb01515.x
Turkmen, E., Yetgin, S.H., & Gülesen, M. (2017). Investigation of Properties of Glass Fiber and Rubber Filled PA6 Polymer, 7575, 15–23.
Wang, Y., Cheng, L., Cui, X., & Guo, W. (2019). Crystallization behavior and properties of glass fiber reinforced polypropylene composites. Polymers, 11(7), 14–16. https://doi.org/10.3390/polym11071198
Yan, C., Yan, P., Xu, H., Liu, D., Chen, G., Cai, G., & Zhu, Y. (2022). Preparation of continuous glass fiber/polyamide 6 composites containing hexaphenoxycyclotriphosphazene: Mechanical properties, thermal stability, and flame retardancy. Polymer Composites, 43(2), 1022–1037. https://doi.org/10.1002/pc.26431
Zhong, Y., Liu, P., Pei, Q., Sorkin, V., Louis Commillus, A., Su, Z., Guo, T., Thitsartarn W., Lin, T., He, C., & Zhang, Y. W. (2020). Elastic properties of injection molded short glass fiber reinforced thermoplastic composites. Composite Structures, 254(April), 112850. https://doi.org/10.1016/j.compstruct.2020.112850
Zuhudi, N. Z. M., Lin, R. J., & Jayaraman, K. (2016). Flammability, thermal and dynamic mechanical properties of bamboo–glass hybrid composites. Journal of Thermoplastic Composite Materials, 29(9), 1210–1228. https://doi.org/10.1177/0892705714563118
INVESTIGATION OF THE EFFECT OF LIGNIN ADITION ON THE PROPERTIES OF GLASS FIBER REINFORCED POLYAMIDE 6/POLYAMIDE 610 COMPOSITES
Year 2024,
Volume: 27 Issue: 1, 213 - 221, 03.03.2024
In this study, PA6 and PA610 were blended and glass fiber (GF) and lignin (LL) were added to improve the properties. Composites were prepared by extrusion and injection molding and morphological, thermal (differential scanning calorimetry-DSC, thermogravimetric analysis-TGA) and flame retardancy (limiting oxygen index-LOI, vertical burning test-UL-94, cone calorimetry) properties were examined. While a good interfacial interaction and homogeneous dispersion were observed in the GF reinforced composite, the interaction of LL with the matrix was found to be weak. GF, improved the thermal stability of the matrix and increased the char residue. In GF/LL composites, although LL decreased the thermal resistance, it slowed down the mass loss and increased the char residue. While there was no significant change in the melting point of the matrix with the addition of GF and LL, LL reduced the crystallization temperature and therefore greatly reduced the crystallinity of the matrix. LOI and UL94 classification of the matrix did not change by adding GF. But LL significantly shortened the burning time. GF and LL improved the flame retardancy of the matrix by significantly reducing the total heat release and peak heat release rate values. In conclusion, this study showed that lignin is a promising flame retardant for GF reinforced PA composites.
Arboleda-Clemente, L., Ares-Pernas, A., García-Fonte, X. X., & Abad, M. J. (2016). Water sorption of PA12/PA6/MWCNT composites with a segregated conductive network: structure–property relationships. Journal of Materials Science, 51(18), 8674–8686. https://doi.org/10.1007/s10853-016-0127-x
Artykbaeva, E., Ucpinar Durmaz, B., Aksoy, P., & Aytac, A. (2022). Investigation of the properties of PA6/PA610 blends and glass fiber reinforced PA6/PA610 composites. Polymer Composites, 43(10), 7514–7525. https://doi.org/10.1002/pc.26840
Cayla, A., Rault, F., Giraud, S., Salaün, F., Sonnier, R., & Dumazert, L. (2019). Influence of ammonium polyphosphate/lignin ratio on thermal and fire behavior of biobased thermoplastic: The case of Polyamide 11. Materials, 12(7). https://doi.org/10.3390/ma12071146
Chen, Y., Wang, Q., Yan, W., & Tang, H. (2006). Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polymer Degradation and Stability, 91(11), 2632–2643. https://doi.org/10.1016/j.polymdegradstab.2006.05.002
Fabbri, F., Bischof, S., Mayr, S., Gritsch, S., Jimenez Bartolome, M., Schwaiger, N., Guebitz, G.M., & Weiss, R. (2023). The Biomodified Lignin Platform: A Review. Polymers, 15(7). https://doi.org/10.3390/polym15071694
Koruyucu, A., & Balaban, F. Ç. (2021). Muz kabuğu ekstraktının pamuk ve pamuk-poliester karışımlı kumaşlarda güç tutuşurluğa etkisinin incelenmesi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 24(2), 66–82.
Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G., & Guan, J. (2017). Thermal Stability and Fire Retardant Properties of Polyamide 11 Microcomposites Containing Different Lignins. Industrial and Engineering Chemistry Research, 56(46), 13704–13714. https://doi.org/10.1021/acs.iecr.7b03085
Marset, D., Dolza, C., Fages, E., Gonga, E., Gutiérrez, O., Gomez-Caturla, J., Ivorra-Martinez, J., Sanchez-Nacher, L., & Quiles-Carrillo, L. (2020). The effect of halloysite nanotubes on the fire retardancy properties of partially biobased polyamide 610. Polymers, 12(12), 1–21. https://doi.org/10.3390/polym12123050
Moran, C. S., Barthelon, A., Pearsall, A., Mittal, V., & Dorgan, J. R. (2016). Biorenewable blends of polyamide-4,10 and polyamide-6,10. Journal of Applied Polymer Science, 133(45). https://doi.org/10.1002/app.43626
Nurazzi, N. M., Khalina, A., Sapuan, S. M., Ilyas, R. A., Rafiqah, S. A., & Hanafee, Z. M. (2020). Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. Journal of Materials Research and Technology, 9(2), 1606–1618. https://doi.org/10.1016/j.jmrt.2019.11.086
Otaegi, I., Aramburu, N., Müller, A. J., & Guerrica-Echevarría, G. (2018). Novel biobased polyamide 410/polyamide 6/CNT nanocomposites. Polymers, 10(9), 1–18. https://doi.org/10.3390/polym10090986
Özdemir, F., & Özğan, A. O. (2023). Yumurta kabuğu içeriğinin odun plastik kompozit malzemenin yanma dayanımı üzerine etkisi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 26(1), 98–107.
Pagacz, J., Raftopoulos, K. N., Leszczyńska, A., & Pielichowski, K. (2016). Bio-polyamides based on renewable raw materials: Glass transition and crystallinity studies. Journal of Thermal Analysis and Calorimetry, 123(2), 1225–1237. https://doi.org/10.1007/s10973-015-4929-x
Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers, 13(21). https://doi.org/10.3390/polym13213721
Ruehle, D. A., Perbix, C., Castañeda, M., Dorgan, J. R., Mittal, V., Halley, P., & Martin, D. (2013). Blends of biorenewable polyamide-11 and polyamide-6,10. Polymer, 54(26), 6961–6970. https://doi.org/10.1016/j.polymer.2013.10.013
Safari, M., Otaegi, I., Aramburu, N., Wang, Y., Liu, G., Dong, X., Wang, D., Guerrica-Echevarria, G., & Müller, A. J. (2021). Composition dependent miscibility in the crystalline state of polyamide 6 /polyamide 4,10 blends: From single to double crystalline blends. Polymer, 219(February), 123570. https://doi.org/10.1016/j.polymer.2021.123570
Sallem-Idrissi, N., Van Velthem, P., & Sclavons, M. (2018). Fully Bio-Sourced Nylon 11/Raw Lignin Composites: Thermal and Mechanical Performances. Journal of Polymers and the Environment, 26(12), 4405–4414. https://doi.org/10.1007/s10924-018-1311-7
Shi, Y. (2016). Phase behavior of polyamide 6/612 blends. Plastics Engineering, 72(4), 46–49. https://doi.org/10.1002/j.1941-9635.2016.tb01515.x
Turkmen, E., Yetgin, S.H., & Gülesen, M. (2017). Investigation of Properties of Glass Fiber and Rubber Filled PA6 Polymer, 7575, 15–23.
Wang, Y., Cheng, L., Cui, X., & Guo, W. (2019). Crystallization behavior and properties of glass fiber reinforced polypropylene composites. Polymers, 11(7), 14–16. https://doi.org/10.3390/polym11071198
Yan, C., Yan, P., Xu, H., Liu, D., Chen, G., Cai, G., & Zhu, Y. (2022). Preparation of continuous glass fiber/polyamide 6 composites containing hexaphenoxycyclotriphosphazene: Mechanical properties, thermal stability, and flame retardancy. Polymer Composites, 43(2), 1022–1037. https://doi.org/10.1002/pc.26431
Zhong, Y., Liu, P., Pei, Q., Sorkin, V., Louis Commillus, A., Su, Z., Guo, T., Thitsartarn W., Lin, T., He, C., & Zhang, Y. W. (2020). Elastic properties of injection molded short glass fiber reinforced thermoplastic composites. Composite Structures, 254(April), 112850. https://doi.org/10.1016/j.compstruct.2020.112850
Zuhudi, N. Z. M., Lin, R. J., & Jayaraman, K. (2016). Flammability, thermal and dynamic mechanical properties of bamboo–glass hybrid composites. Journal of Thermoplastic Composite Materials, 29(9), 1210–1228. https://doi.org/10.1177/0892705714563118
There are 22 citations in total.
Details
Primary Language
Turkish
Subjects
Polymer Science and Technologies, Composite and Hybrid Materials