Research Article
BibTex RIS Cite

ÖRGÜLÜ GEOTEKSTİL İLE GÜÇLENDİRİLMİŞ ZEMİNLER İÇİN TAŞIMA KAPASİTESİ ARTIŞININ TEMEL GENİŞLİĞİ AÇISINDAN DEĞERLENDİRİLMESİ

Year 2024, Volume: 27 Issue: 2, 325 - 339, 03.06.2024
https://doi.org/10.17780/ksujes.1358122

Abstract

Bir zemin ortamının, düşünülen yapıyı taşıma gücü ve oturma açılarından güvenli olarak taşıyamayacağı tespit edilirse, geoteknik mühendisliği açısından alternatif yollara başvurulabilir. Bunlar; yapının yerinin değiştirilmesi, derin temel kullanılması, zeminin stabilizasyonu, kötü zeminin kaldırılarak, yerine iyi derecelenmiş iri taneli zeminin kompaksiyonla yerleştirilmesi, geosentetik kullanılması vb. dir. Bu seçenekler; maliyet, eldeki araç-gereç durumuna göre değerlendirilir. Geosentetik ürünlerden biri olan geotekstiller son yıllarda zemin güçlendirilmesinde yaygın olarak kullanılmaktadır. Bu çalışmada geotekstille güçlendirilmiş zeminlerin taşıma kapasitesi artışının ve bunun temel genişliği ile ilişkisinin tespit edilmesi hedeflenmiştir. Bu bağlamda, bir deney mekanizması kurulmuş ve çeşitli sıkılıklarda yerleştirilmiş kum zemine oturan temeller yardımı ile deneyler yürütülmüştür. İlave olarak; mevcut deney düzeneği sonlu elemanlar tabanında çözümleme yapan PLAXIS 2D programı ile modellendi ve sayısal analizler yapıldı. Böylece bu numerik sonuçlar model deneylerden elde edilen sonuçlar ile M-C malzeme modeli parametrelerini doğrulamak için karşılaştırıldı. Sonuç olarak, zeminin sıkılığı, donatı tabakası ve temel genişliği, granüler zeminlerin taşıma gücü artışı üzerinde etkili parametreler olduğu belirlenmiştir.

Project Number

yok

References

  • Abu-Farsakh, M., Chen, Q., M., Sharma, R., (2013). An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand, Soils Found, 53(2), 335–348. https://doi.org/10.1016/j.sandf.2013.01.001
  • Adams, M. T., Collin, J. G., (1997). Large model spread footing load tests on geosynthetic reinforced soil foundations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(1), 66–72. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(66)
  • Asakereh, A., Ghazavi, M., Tafreshi, S.N.M., (2013). Cyclic response of footing on geogrid-reinforced sand with void, Soils Found. 53(3), 363–374.
  • ASTM D-4595, (2017). Standard test method for tensile properties of geotextiles by the wide-width strip method, American Society for Testing and Materials, West Conshohocken.
  • ASTM D-6913, (2017). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. American Society for Testing and Materials, West Conshohocken.
  • ASTM D-854, (2006). Standard test methods for specific gravity of soil solids by water pycnometer. American Society for Testing and Materials, West Conshohocken.
  • ASTM D4253-16, (2016). Standard test methods for minimum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken.
  • ASTM D4254-16, (2016). Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken.
  • ASTM D3080M-11, (2011). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken.
  • Ateş, B., Şadoğlu, E., (2014). Donatılı kohezyonsuz zeminlerde düşey gerilme dağılışı, Altıncı Ulusal Geosentetikler Konferansı, İSTANBUL, TÜRKIYE, ss.165-176.
  • Ateş, B., Şadoğlu, E., (2020). Vertical stress distribution in reinforced sandy soil in plane strain conditions, Teknik Dergi, 31(3), pp.9967-9985. https://doi.org/10.18400/tekderg.449897
  • Binquet, J., Lee, K. L., (1975). Bearing capacity analysis of reinforced earth slabs, J. Geotech. Eng. Div., 101(12), 1257–1276.
  • Chakraborty, M., Kumar, J., (2014). Bearing capacity of circular foundations reinforced with geogrid sheets, Soils Found, 54 (4), 820–832. https://doi.org/10.1016/j.sandf.2014.06.013
  • Chen, J. F., Guo, X. P., Xue, J. F., Guo, P. H., (2019). Load behaviour of model strip footings on reinforced transparent soils, Geosynth. Int., 26(3), 251–260. https://doi.org/10.1680/jgein.19.00003
  • Chen, J., Guo, X., Sun, R., Rajesh, S., Jiang, S., Xue, J., (2021). Physical and numerical modelling of strip footing on geogrid reinforced transparent sand, Geotextiles and Geomembranes, 49(2), 399–412. https://doi.org/10.1016/j.geotexmem.2020.10.011.
  • Cicek, E., Guler, E., Yetimoglu, T., (2015). Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil, Soils Found, 55(4), 661–677. https://doi.org/10.1016/j.sandf.2015.06.001.
  • Das, B. M., Omar, M. T., (1994). The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement, Geotech Geol Eng., 12(3), 133–141. https://doi.org/10.1007/BF00429771
  • Dutte, T. T. and Saride, S. (2015). Effect of confining pressure, relative density and shear strain on the poisson’s ratio of clean sand, 50th Indian Geotechnical Conference.
  • Gao, Y. X., Zhu, H. H., Ni, Y. F., Wei, C., Shi, B., (2022). Experimental study on uplift behavior of shallow anchor plates in geogrid-reinforced soil. Geotextiles and Geomembranes. 50(5), 994–1003. https://doi.org/10.1016/j.geotexmem.2022.06.006.
  • Ghazavi, M., Lavasan, A. A., (2008). Interference effect of shallow foundations constructed on sand reinforced with geosynthetics. Geotextiles and Geomembranes. 26(5), 404–415. https://doi.org/10.1016/j.geotexmem.2008.02.003
  • Guido, V. A., Chang, D. K., and Sweeney, M. A., (1986). Comparison of geogrid and geotextile reinforced slabs, Can. Geotech. J., 23(4), 435–440. https://doi.org/10.1139/t86-073
  • Hussein M. G., Meguid. M. A., (2019). Improved understanding of geogrid response to pullout loading: insights from three-dimensional finite-element analysis. Canadian Geotechnical Journal. 57(2), 277-293. https://doi.org/10.1139/cgj-2018-0384.
  • Kargar, M., Mir Mohammad Hosseini, S., M., (2016). Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases, European Journal of Environmental and Civil Engineering, https://doi.org/10.1080/19648189.2016.1214181.
  • Kirkpatrick, W. M., Uzuner, B. A., (1975). Measurement errors in model foundations tests. In: Istanbul Conference on Soil Mechanics, Istanbul, pp. 98–106.
  • Kirkpatrick, W. M., Yanikian, H. A., (1975). Side friction in plane strain tests. In: Proceedings of the Fourth South East Conference On Soil Engineering, Kuala Lumpur, Malaysia, pp. 76–84.
  • Lai, J., Yang, B. H., (2017). Laboratory testing and numerical simulation of a strip footing on geosynthetically reinforced loose sand. Journal of Testing and Evaluation. 45(1), 51–60. https://doi.org/10.1520/JTE20160444.
  • Lavasan, A. A., Ghazavi, M., (2012). Bearing of closely spaced square and circular footing on reinforced sand. Soils Found. 52 (1), 160–167.
  • Kahraman, M.Ş., Yeşiltepe, Ö., Türedi, Y. ve Örnek, M. (2022). Mikrogrid donatılı zeminde ring temel taşıma kapasitesinin deneysel olarak incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25 (4) , 516-527. https://doi.org/10.17780/ksujes.1105191
  • Michalowski, R.L. and Shi, L. (2003). Deformation patterns of reinforced foundation sand at failure. Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol. 129, pp. 439-449.
  • Michalowski, R. L., (2004). Limit loads on reinforced foundation soils, J. Geotech. Geoenviron. Eng., 130 (4), 381–390.
  • Moghaddas Tafreshi, S. N., Dawson, A. R., (2010). Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement. Geotext Geomembr 28(1):72–84. https://doi.org/1016/j.geotexmem.2009.09.003
  • Moroglu, B., Uzuner, B., A., Sadoglu, E., (2005). Behaviour of the model surface strip footing on reinforced sand, Indian Journal of Engineering and Material Science, 12 (5), 419–426.
  • Omar, M., T., Das, B., M., Puri, V., K., Yen, S., C., (1993). Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement, Canadian Geotechnical Journal, 30(3), 545–549. https://doi.org/10.1139/t93-046
  • Patra, C., R., Das, B., M., Atalar, C., (2005). Bearing capacity of embedded strip foundation on geogrid-reinforced sand, Geotextiles and Geomembranes. 23(5), 454–462. https://doi.org/10.1016/j.geotexmem.2005.02.001
  • Patra, C. R., Das, B. M., Bhoi, M., Shin, E. C., (2006). Eccentrically loaded strip foundation on Geogrid-reinforced sand. Geotext. Geomembr. 24 (4), 254–259.
  • Saha Roy, S., Deb, K., (2017). Bearing capacity of rectangular footings on multilayer geosynthetic-reinforced granular fill over soft soil. International Journal of Geomechanics. 17(9), 04017069. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000959.
  • Shin, E. C., Das, B., M., Puri, V. K., Yen, S. C., Cook, E. E., (1993). Bearing capacity of strip foundation on geogrid reinforced clay. Geotech Test J ASTM 16(4):534–541. https://doi.org/10.1520/GTJ10293J
  • Şadoğlu, E., Uzuner, B. A., (2010). Behaviours of the Model Eccentrically Loaded Strip Footings on Unreinforced and Reinforced Sand, 9th International Congress on Advances in Civil Engineering, Trabzon, Turkey.
  • Takemura, J., Okamura, M., Suemasa, N. and Kimura, T. (1992). Bearing capacities and deformations of sand reinforced with geogrids. The International Symposium on Earth Reinforcement Practice, November 11-13, Vol. 2, pp. 695-700 Fukuoka, Japan.
  • Toyosawa, Y., Itoh, K., Kikkawa, N., Yang, J. J., Liu, F., (2013). Influence of model footing diameter and embedded depth on particle size effect in centrifugal bearing capacity tests. Soils and Foundations. 53(2), 349-356. https://doi.org/10.1016/j.sandf.2012.11.027.
  • Useche-Infante, D., Martinez, G. A., Arrúa, P., Eberhardt, M., (2019). Experimental study of behaviour of circular footing on geogrid-reinforced sand. Geomechanics and Geoengineering. 17(1), 45–63. https://doi.org/10.1080/17486025.2019.1683621.
  • Venkateswarlu H., Hegde, A., (2020). Effect of infill materials on vibration isolation efficacy of geocell-reinforced soil beds. Canadian Geotechnical Journal. 57(9) 1304-1319. https://doi.org/10.1139/cgj-2019-0135.
  • Vinod, P., Bhaskar, A. B., Sreehari, S., (2009). Behavior of a square model footing on loose sand reinforced with braided coir rope, Geotextiles and Geomembranes, 27(6), 464–474. https://doi.org/10.1016/j.geotexmem.2009.08.001
  • Wang, J. Q., Zhang, L. L., Xue, J. F., Tang, Y., (2018). Load-settlement response of shallow square footings on geogrid-reinforced sand under cyclic loading. Geotextiles and Geomembranes. 46(5), 586–596. https://doi.org/10.1016/j.geotexmem.2018.04.009.
  • Wayne, M. H., Han, J., Akins, K., (1998). The design of geosynthetic reinforced foundations. In: Proceedings of ASCE's 1998 Annual Convention & Exposition, ASCE Geotechnical Special Publication, 76, pp. 1–18.
  • Xu, Y., Williams, D. J., Serati, M., Scheuermann, A., Vangsness, T., (2018). Effects of scalping on direct shear strength of crusher run and crusher run/geogrid interface. Journal of Materials in Civil Engineering. 30(9). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002411.
  • Xu, Y., Yan, G., Williams, D. J., Serati, M., Scheuermann, A., Vangsness, T., (2019). Experimental and numerical studies of a strip footing on geosynthetic-reinforced sand. International Journal of Physical Modelling in Geotechnics. 20(5), 267–280. https://doi.org/10.1680/jphmg.18.00021.
  • Yetimoglu, T., Wu, J. T. H., Saglamer, A., (1994). Bearing capacity of rectangular footings on geogrid-reinforced sand, J. Geotech. Engrg, 120(12), 2083–2099. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2083)

EVALUATION OF BEARING CAPACITY INCREASE FOR WOVEN GEOTEXTILE REINFORCED SOILS IN TERMS OF WIDTH OF FOOTING

Year 2024, Volume: 27 Issue: 2, 325 - 339, 03.06.2024
https://doi.org/10.17780/ksujes.1358122

Abstract

If it is understood that a soil medium cannot safely support the planned structure from the point of bearing capacity and settlement, various options can be applied in geotechnical engineering. These are relocation of the structure, usage of deep foundation, stabilisation of the soil, substitution of weak soil with well-graded coarse-grained soil by compaction, usage of geosynthetics, etc. These alternatives are evaluated according to the cost and availability of necessary materials and equipment. Geotextiles, one of the geosynthetic products, have been widely used for soil reinforcement recently. Therefore, the study intends to specify the soil's bearing capacity increase with geotextile and its dependence on footing width. For this aim, a testing apparatus has been produced, and the experiments have been conducted with a strip footing model on soil with various relative densities. Besides, this test setup was simulated with PLAXIS 2D software depending on the finite element method (FEM), and numerical analyses were performed. The numerical results were compared with the laboratory tests to verify parameters of M-C material model. Consequently, the study stated that the relative density of the sand, footing width, and reinforcement layer are significant factors for the bearing capacity increase of granular soils.

Project Number

yok

References

  • Abu-Farsakh, M., Chen, Q., M., Sharma, R., (2013). An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand, Soils Found, 53(2), 335–348. https://doi.org/10.1016/j.sandf.2013.01.001
  • Adams, M. T., Collin, J. G., (1997). Large model spread footing load tests on geosynthetic reinforced soil foundations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(1), 66–72. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(66)
  • Asakereh, A., Ghazavi, M., Tafreshi, S.N.M., (2013). Cyclic response of footing on geogrid-reinforced sand with void, Soils Found. 53(3), 363–374.
  • ASTM D-4595, (2017). Standard test method for tensile properties of geotextiles by the wide-width strip method, American Society for Testing and Materials, West Conshohocken.
  • ASTM D-6913, (2017). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. American Society for Testing and Materials, West Conshohocken.
  • ASTM D-854, (2006). Standard test methods for specific gravity of soil solids by water pycnometer. American Society for Testing and Materials, West Conshohocken.
  • ASTM D4253-16, (2016). Standard test methods for minimum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken.
  • ASTM D4254-16, (2016). Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken.
  • ASTM D3080M-11, (2011). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken.
  • Ateş, B., Şadoğlu, E., (2014). Donatılı kohezyonsuz zeminlerde düşey gerilme dağılışı, Altıncı Ulusal Geosentetikler Konferansı, İSTANBUL, TÜRKIYE, ss.165-176.
  • Ateş, B., Şadoğlu, E., (2020). Vertical stress distribution in reinforced sandy soil in plane strain conditions, Teknik Dergi, 31(3), pp.9967-9985. https://doi.org/10.18400/tekderg.449897
  • Binquet, J., Lee, K. L., (1975). Bearing capacity analysis of reinforced earth slabs, J. Geotech. Eng. Div., 101(12), 1257–1276.
  • Chakraborty, M., Kumar, J., (2014). Bearing capacity of circular foundations reinforced with geogrid sheets, Soils Found, 54 (4), 820–832. https://doi.org/10.1016/j.sandf.2014.06.013
  • Chen, J. F., Guo, X. P., Xue, J. F., Guo, P. H., (2019). Load behaviour of model strip footings on reinforced transparent soils, Geosynth. Int., 26(3), 251–260. https://doi.org/10.1680/jgein.19.00003
  • Chen, J., Guo, X., Sun, R., Rajesh, S., Jiang, S., Xue, J., (2021). Physical and numerical modelling of strip footing on geogrid reinforced transparent sand, Geotextiles and Geomembranes, 49(2), 399–412. https://doi.org/10.1016/j.geotexmem.2020.10.011.
  • Cicek, E., Guler, E., Yetimoglu, T., (2015). Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil, Soils Found, 55(4), 661–677. https://doi.org/10.1016/j.sandf.2015.06.001.
  • Das, B. M., Omar, M. T., (1994). The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement, Geotech Geol Eng., 12(3), 133–141. https://doi.org/10.1007/BF00429771
  • Dutte, T. T. and Saride, S. (2015). Effect of confining pressure, relative density and shear strain on the poisson’s ratio of clean sand, 50th Indian Geotechnical Conference.
  • Gao, Y. X., Zhu, H. H., Ni, Y. F., Wei, C., Shi, B., (2022). Experimental study on uplift behavior of shallow anchor plates in geogrid-reinforced soil. Geotextiles and Geomembranes. 50(5), 994–1003. https://doi.org/10.1016/j.geotexmem.2022.06.006.
  • Ghazavi, M., Lavasan, A. A., (2008). Interference effect of shallow foundations constructed on sand reinforced with geosynthetics. Geotextiles and Geomembranes. 26(5), 404–415. https://doi.org/10.1016/j.geotexmem.2008.02.003
  • Guido, V. A., Chang, D. K., and Sweeney, M. A., (1986). Comparison of geogrid and geotextile reinforced slabs, Can. Geotech. J., 23(4), 435–440. https://doi.org/10.1139/t86-073
  • Hussein M. G., Meguid. M. A., (2019). Improved understanding of geogrid response to pullout loading: insights from three-dimensional finite-element analysis. Canadian Geotechnical Journal. 57(2), 277-293. https://doi.org/10.1139/cgj-2018-0384.
  • Kargar, M., Mir Mohammad Hosseini, S., M., (2016). Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases, European Journal of Environmental and Civil Engineering, https://doi.org/10.1080/19648189.2016.1214181.
  • Kirkpatrick, W. M., Uzuner, B. A., (1975). Measurement errors in model foundations tests. In: Istanbul Conference on Soil Mechanics, Istanbul, pp. 98–106.
  • Kirkpatrick, W. M., Yanikian, H. A., (1975). Side friction in plane strain tests. In: Proceedings of the Fourth South East Conference On Soil Engineering, Kuala Lumpur, Malaysia, pp. 76–84.
  • Lai, J., Yang, B. H., (2017). Laboratory testing and numerical simulation of a strip footing on geosynthetically reinforced loose sand. Journal of Testing and Evaluation. 45(1), 51–60. https://doi.org/10.1520/JTE20160444.
  • Lavasan, A. A., Ghazavi, M., (2012). Bearing of closely spaced square and circular footing on reinforced sand. Soils Found. 52 (1), 160–167.
  • Kahraman, M.Ş., Yeşiltepe, Ö., Türedi, Y. ve Örnek, M. (2022). Mikrogrid donatılı zeminde ring temel taşıma kapasitesinin deneysel olarak incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25 (4) , 516-527. https://doi.org/10.17780/ksujes.1105191
  • Michalowski, R.L. and Shi, L. (2003). Deformation patterns of reinforced foundation sand at failure. Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol. 129, pp. 439-449.
  • Michalowski, R. L., (2004). Limit loads on reinforced foundation soils, J. Geotech. Geoenviron. Eng., 130 (4), 381–390.
  • Moghaddas Tafreshi, S. N., Dawson, A. R., (2010). Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement. Geotext Geomembr 28(1):72–84. https://doi.org/1016/j.geotexmem.2009.09.003
  • Moroglu, B., Uzuner, B., A., Sadoglu, E., (2005). Behaviour of the model surface strip footing on reinforced sand, Indian Journal of Engineering and Material Science, 12 (5), 419–426.
  • Omar, M., T., Das, B., M., Puri, V., K., Yen, S., C., (1993). Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement, Canadian Geotechnical Journal, 30(3), 545–549. https://doi.org/10.1139/t93-046
  • Patra, C., R., Das, B., M., Atalar, C., (2005). Bearing capacity of embedded strip foundation on geogrid-reinforced sand, Geotextiles and Geomembranes. 23(5), 454–462. https://doi.org/10.1016/j.geotexmem.2005.02.001
  • Patra, C. R., Das, B. M., Bhoi, M., Shin, E. C., (2006). Eccentrically loaded strip foundation on Geogrid-reinforced sand. Geotext. Geomembr. 24 (4), 254–259.
  • Saha Roy, S., Deb, K., (2017). Bearing capacity of rectangular footings on multilayer geosynthetic-reinforced granular fill over soft soil. International Journal of Geomechanics. 17(9), 04017069. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000959.
  • Shin, E. C., Das, B., M., Puri, V. K., Yen, S. C., Cook, E. E., (1993). Bearing capacity of strip foundation on geogrid reinforced clay. Geotech Test J ASTM 16(4):534–541. https://doi.org/10.1520/GTJ10293J
  • Şadoğlu, E., Uzuner, B. A., (2010). Behaviours of the Model Eccentrically Loaded Strip Footings on Unreinforced and Reinforced Sand, 9th International Congress on Advances in Civil Engineering, Trabzon, Turkey.
  • Takemura, J., Okamura, M., Suemasa, N. and Kimura, T. (1992). Bearing capacities and deformations of sand reinforced with geogrids. The International Symposium on Earth Reinforcement Practice, November 11-13, Vol. 2, pp. 695-700 Fukuoka, Japan.
  • Toyosawa, Y., Itoh, K., Kikkawa, N., Yang, J. J., Liu, F., (2013). Influence of model footing diameter and embedded depth on particle size effect in centrifugal bearing capacity tests. Soils and Foundations. 53(2), 349-356. https://doi.org/10.1016/j.sandf.2012.11.027.
  • Useche-Infante, D., Martinez, G. A., Arrúa, P., Eberhardt, M., (2019). Experimental study of behaviour of circular footing on geogrid-reinforced sand. Geomechanics and Geoengineering. 17(1), 45–63. https://doi.org/10.1080/17486025.2019.1683621.
  • Venkateswarlu H., Hegde, A., (2020). Effect of infill materials on vibration isolation efficacy of geocell-reinforced soil beds. Canadian Geotechnical Journal. 57(9) 1304-1319. https://doi.org/10.1139/cgj-2019-0135.
  • Vinod, P., Bhaskar, A. B., Sreehari, S., (2009). Behavior of a square model footing on loose sand reinforced with braided coir rope, Geotextiles and Geomembranes, 27(6), 464–474. https://doi.org/10.1016/j.geotexmem.2009.08.001
  • Wang, J. Q., Zhang, L. L., Xue, J. F., Tang, Y., (2018). Load-settlement response of shallow square footings on geogrid-reinforced sand under cyclic loading. Geotextiles and Geomembranes. 46(5), 586–596. https://doi.org/10.1016/j.geotexmem.2018.04.009.
  • Wayne, M. H., Han, J., Akins, K., (1998). The design of geosynthetic reinforced foundations. In: Proceedings of ASCE's 1998 Annual Convention & Exposition, ASCE Geotechnical Special Publication, 76, pp. 1–18.
  • Xu, Y., Williams, D. J., Serati, M., Scheuermann, A., Vangsness, T., (2018). Effects of scalping on direct shear strength of crusher run and crusher run/geogrid interface. Journal of Materials in Civil Engineering. 30(9). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002411.
  • Xu, Y., Yan, G., Williams, D. J., Serati, M., Scheuermann, A., Vangsness, T., (2019). Experimental and numerical studies of a strip footing on geosynthetic-reinforced sand. International Journal of Physical Modelling in Geotechnics. 20(5), 267–280. https://doi.org/10.1680/jphmg.18.00021.
  • Yetimoglu, T., Wu, J. T. H., Saglamer, A., (1994). Bearing capacity of rectangular footings on geogrid-reinforced sand, J. Geotech. Engrg, 120(12), 2083–2099. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2083)
There are 48 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Civil Engineering
Authors

Bayram Ateş 0000-0002-1251-7053

Erol Şadoğlu 0000-0003-3757-5126

Project Number yok
Publication Date June 3, 2024
Submission Date September 10, 2023
Published in Issue Year 2024Volume: 27 Issue: 2

Cite

APA Ateş, B., & Şadoğlu, E. (2024). EVALUATION OF BEARING CAPACITY INCREASE FOR WOVEN GEOTEXTILE REINFORCED SOILS IN TERMS OF WIDTH OF FOOTING. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 325-339. https://doi.org/10.17780/ksujes.1358122