Research Article
BibTex RIS Cite

ATIK CAM TOZU KATKILI BETONLARIN YÜKSEK SICAKLIK ALTINDAKİ PERFORMANSLARININ İNCELENMESİ

Year 2024, Volume: 27 Issue: 2, 631 - 642, 03.06.2024
https://doi.org/10.17780/ksujes.1414159

Abstract

Bu çalışmanın amacı atık cam tozu kullanılarak üretilen betonların yüksek sıcaklık öncesi ve sonrası dayanım performanslarındaki değişimini araştırmaktır. Bu doğrultuda, farklı atık cam tozu ikame oranı içeren 6 farklı beton karışım serisi hazırlanmıştır. Üretilen beton serileri üzerinde mekanik testler içeren deneysel bir program yürütülmüştür. Kür süresini tamamlayan beton serileri, sırasıyla 400 oC, 600 oC, 800 oC’de, 1 saat yüksek sıcaklıkta bekletilmiştir. Bu beton gruplarının yüksek sıcaklık sonrası basınç dayanımı kayıpları belirlenmiştir. Betonda atık cam tozu ikamesinin artmasıyla betonun mekanik özelliklerinde azalma görülmüştür. Öte yandan en iyi sonuç cam tozu oranının %10 oranında kullanıldığı serilerde gözlenmiştir. Betonda cam tozu oranının %10’a kadar kullanımının betonun performansını arttırdığı gözlenmiştir. Sonuç olarak, atık atık cam tozunun yüksek sıcaklığa dayanıklı beton üretiminde çimento ikame malzemesi olarak kullanılabileceği görülmüştür. Çimento miktarında yapılacak bu azaltma ile karbon ayak izi azaltılmış daha çevreci bir beton üretiminin mümkün olabileceği görülmüştür. Ayrıca beton üretiminde atık cam tozu kullanımının, atık yönetimine çözüm ve döngüsel ekonomiye katkı sağlayarak inşaat sektörü için potansiyel bir seçenek haline gelmektedir.

References

  • Abed, M., & de Brito, J. (2020). Evaluation of high-performance self-compacting concrete using alternative materials and exposed to elevated temperatures by non-destructive testing. Journal of Building Engineering, 32, 101720. https://doi.org/10.1016/j.jobe.2020.101720
  • Acikgenc Ulas, M. (2022). Development of an artificial neural network model to predict waste marble powder demand in eco‐efficient self‐compacting concrete. Structural Concrete. https://doi.org/10.1002/suco.202200043
  • Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156
  • Bengal, S. N., Pammar, L. S., & Nayak, C. B. (2022). Engineering application of organic materials with concrete: A review. Materials Today: Proceedings, 56, 581–586. https://doi.org/10.1016/j.matpr.2022.02.390
  • Binici, H., Temiz, H., Sevinç, A. H., Mustafa, E., Mehmet, K., & Şayir, Z. (2013). Alüminyum Talaşı, Bims ve Gazbeton Tozu İçeren Betonların Yüksek Sıcaklık Etkisinin İncelenmesi. Yapı Teknolojileri Elektronik Dergisi, 9(1), 1–15. e-ISSN:1305-631X
  • Delay, R. (2008). Our Post-Kyoto Treaty Climate Change Framework: Open Market Carbon-Ranching as Smart Development. Penn St. Envtl. L. Rev., 17, 55.
  • Demir, T., and Alyamaç, K. E. (2022). Investigation of the Use of Marble Powder in Production of High Strength Concretes. Open Journal of Nano, 7(1), 18–25. https://doi.org/10.56171/ojn.1034691
  • Demir, T., Demirel, B., and Öztürk, M. (2022). An Evaluation of the Effect of Waste Aluminum Sawdust on the Carbonation of Concrete. Bitlis Eren University Journal of Science, 11(4), 993–999. https://doi.org/10.17798/bitlisfen.1141419
  • Demırel, B., & Keleştemur, O. (2011). Yüksek Sıcaklığa Maruz Pomza ve Silis Dumanı Katkılı Betonların Mekanik ve Fiziksel Özelliklerine Kür Yaşının Etkisi. Electronic Journal of Construction Technologies/Yapi Teknolojileri Elektronik Dergisi, 7(1). e-ISSN:1305-631X
  • Derinpinar, A. N., Karakoç, M. B., & Özcan, A. (2022). Performance of glass powder substituted slag based geopolymer concretes under high temperature. Construction and Building Materials, 331, 127318. https://doi.org/10.1016/j.conbuildmat.2022.127318
  • Ferdosian, I., & Camões, A. (2017). Eco-efficient ultra-high performance concrete development by means of response surface methodology. Cement and Concrete Composites, 84, 146–156. https://doi.org/10.1016/j.cemconcomp.2017.08.019
  • Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579
  • Katare, V. D., & Madurwar, M. V. (2020). Design and investigation of sustainable pozzolanic material. Journal of Cleaner Production, 242, 118431. https://doi.org/10.1016/j.jclepro.2019.118431
  • Martínez-Lage, I., Vázquez-Burgo, P., & Velay-Lizancos, M. (2020). Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste Management, 104, 9–19. https://doi.org/10.1016/j.wasman.2019.12.044
  • Monteiro, P. (2006). Concrete: microstructure, properties, and materials. McGraw-Hill Publishing.
  • Omran, A., & Tagnit-Hamou, A. (2016). Performance of glass-powder concrete in field applications. Construction and Building Materials, 109, 84–95. https://doi.org/10.1016/j.conbuildmat.2016.02.006
  • Orhan, E., & Yüksel, E. (2017). Öğütülmüş Atık Cam Tozu Katkılı Betonun Puzolanik Aktivitesi ve Yarmada Çekme Dayanımının Belirlenmesi. Engineering Sciences, 12(2), 108–116. ISSN: 1308 7231
  • Öz, H. Ö. (2017). Atık Cam Tozu ve Yüksek Fırın Cürufunun İçeren Kendiliğinden Yerleşen Harçların Taze, Mekanik ve Durabilite Özellikleri. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(4), 9–22.
  • Paul, D., Bindhu, K. R., Matos, A. M., & Delgado, J. (2022). Eco-friendly concrete with waste glass powder: A sustainable and circular solution. Construction and Building Materials, 355, 129217. https://doi.org/10.1016/j.conbuildmat.2022.129217
  • Raju, S., & Kumar, P. R. (2014). Effect of using glass powder in concrete. International Journal of Innovative Research in Science, Engineering and Technology, 31, 21–427. ISSN: 2319 8753
  • Saint-Pierre, F., Philibert, A., Giroux, B., & Rivard, P. (2016). Concrete quality designation based on ultrasonic pulse velocity. Construction and Building Materials, 125, 1022–1027. https://doi.org/10.1016/j.conbuildmat.2016.08.158
  • Shayan, A., & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cement and Concrete Research, 36(3), 457–468. https://doi.org/10.1016/j.cemconres.2005.12.012
  • Standard, B. (2004). BS EN 12504-4: 2004: Testing concrete–Part 4: Determination of ultrasonic pulse velocity. London, Reino Unido.
  • TS EN 772-4. (2000). Kagir Birimler, deney metotları–Bölüm 4: Tabii taskâgir birimlerin toplam ve görünen porozitesi ile bosluksuz ve bosluklu birim hacim kütlesinin tayini (Methods of test for masonry units–Part 4: Determination of real and bulk density and of total a. TS EN 772-4 Ankara-Turkey.
  • TS EN 197-1. (2012). Cement - Part 1: General Cements, Composition, Ankara, Türkiye.
  • TS EN 1097–2. (2000). Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler Bölüm 2: Parçalanma Direncinin Tayini İçin Metotlar. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12350-2. (2019). T. beton deneyleri-B. 2: Ç. (slump) deneyi, Türk Standardları Enstitüsü, Ankara, Türkiye.
  • Turkey, F. A., Beddu, S. B., Ahmed, A. N., & Al-Hubboubi, S. K. (2022). Effect of high temperatures on the properties of lightweight geopolymer concrete based fly ash and glass powder mixtures. Case Studies in Construction Materials, 17, e01489. https://doi.org/10.1016/j.cscm.2022.e01489
  • Wu, Z., Lo, S. H., Kang, H. T., & Su, K. L. (2019). High strength concrete tests under elevated temperature. Athens Journal of Τechnology & Engineering. ISSN: 2241-8237
  • Zhang, Y., Aslani, F., & Lehane, B. (2021). Compressive strength of rubberized concrete: Regression and GA-BPNN approaches using ultrasonic pulse velocity. Construction and Building Materials, 307, 124951. https://doi.org/10.1016/j.conbuildmat.2021.124951
  • Zhong, R., Wille, K., & Viegas, R. (2018). Material efficiency in the design of UHPC paste from a life cycle point of view. Construction and Building Materials, 160. https://doi.org/10.1016/j.conbuildmat.2017.11.049

INVESTIGATION OF THE PERFORMANCE OF WASTE GLASS POWDER SUBSTITUTED CONCRETES UNDER HIGH TEMPERATURES

Year 2024, Volume: 27 Issue: 2, 631 - 642, 03.06.2024
https://doi.org/10.17780/ksujes.1414159

Abstract

This study aims to investigate the changes in the strength performance of concretes produced using waste glass powder before and after high temperature. Accordingly, a series of 6 concretes with different waste glass powder replacement ratios were produced. An experimental program including mechanical tests was carried out on the produced concrete series. Concrete series that completed the curing period were kept at 400 oC, 600 oC, 800 oC, respectively, and compressive strength losses after high temperature were determined. The mechanical properties of concrete decreased with the increase of waste glass powder substitution in concrete. On the other hand, the best results were observed in the series where the glass powder ratio was 10%. It was observed that the use of up to 10% of glass powder in concrete increased the performance of concrete. As a result, it was observed that waste glass powder can be used as a cement replacement material in the production of high temperature resistant concrete. With this reduction in the amount of cement, it has been seen that it is possible to produce a more environmentally friendly concrete with a reduced carbon footprint. In addition, the use of waste glass powder in concrete production becomes a potential option for the construction sector by providing a solution to waste management and contributing to the circular economy.

References

  • Abed, M., & de Brito, J. (2020). Evaluation of high-performance self-compacting concrete using alternative materials and exposed to elevated temperatures by non-destructive testing. Journal of Building Engineering, 32, 101720. https://doi.org/10.1016/j.jobe.2020.101720
  • Acikgenc Ulas, M. (2022). Development of an artificial neural network model to predict waste marble powder demand in eco‐efficient self‐compacting concrete. Structural Concrete. https://doi.org/10.1002/suco.202200043
  • Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156
  • Bengal, S. N., Pammar, L. S., & Nayak, C. B. (2022). Engineering application of organic materials with concrete: A review. Materials Today: Proceedings, 56, 581–586. https://doi.org/10.1016/j.matpr.2022.02.390
  • Binici, H., Temiz, H., Sevinç, A. H., Mustafa, E., Mehmet, K., & Şayir, Z. (2013). Alüminyum Talaşı, Bims ve Gazbeton Tozu İçeren Betonların Yüksek Sıcaklık Etkisinin İncelenmesi. Yapı Teknolojileri Elektronik Dergisi, 9(1), 1–15. e-ISSN:1305-631X
  • Delay, R. (2008). Our Post-Kyoto Treaty Climate Change Framework: Open Market Carbon-Ranching as Smart Development. Penn St. Envtl. L. Rev., 17, 55.
  • Demir, T., and Alyamaç, K. E. (2022). Investigation of the Use of Marble Powder in Production of High Strength Concretes. Open Journal of Nano, 7(1), 18–25. https://doi.org/10.56171/ojn.1034691
  • Demir, T., Demirel, B., and Öztürk, M. (2022). An Evaluation of the Effect of Waste Aluminum Sawdust on the Carbonation of Concrete. Bitlis Eren University Journal of Science, 11(4), 993–999. https://doi.org/10.17798/bitlisfen.1141419
  • Demırel, B., & Keleştemur, O. (2011). Yüksek Sıcaklığa Maruz Pomza ve Silis Dumanı Katkılı Betonların Mekanik ve Fiziksel Özelliklerine Kür Yaşının Etkisi. Electronic Journal of Construction Technologies/Yapi Teknolojileri Elektronik Dergisi, 7(1). e-ISSN:1305-631X
  • Derinpinar, A. N., Karakoç, M. B., & Özcan, A. (2022). Performance of glass powder substituted slag based geopolymer concretes under high temperature. Construction and Building Materials, 331, 127318. https://doi.org/10.1016/j.conbuildmat.2022.127318
  • Ferdosian, I., & Camões, A. (2017). Eco-efficient ultra-high performance concrete development by means of response surface methodology. Cement and Concrete Composites, 84, 146–156. https://doi.org/10.1016/j.cemconcomp.2017.08.019
  • Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579
  • Katare, V. D., & Madurwar, M. V. (2020). Design and investigation of sustainable pozzolanic material. Journal of Cleaner Production, 242, 118431. https://doi.org/10.1016/j.jclepro.2019.118431
  • Martínez-Lage, I., Vázquez-Burgo, P., & Velay-Lizancos, M. (2020). Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste Management, 104, 9–19. https://doi.org/10.1016/j.wasman.2019.12.044
  • Monteiro, P. (2006). Concrete: microstructure, properties, and materials. McGraw-Hill Publishing.
  • Omran, A., & Tagnit-Hamou, A. (2016). Performance of glass-powder concrete in field applications. Construction and Building Materials, 109, 84–95. https://doi.org/10.1016/j.conbuildmat.2016.02.006
  • Orhan, E., & Yüksel, E. (2017). Öğütülmüş Atık Cam Tozu Katkılı Betonun Puzolanik Aktivitesi ve Yarmada Çekme Dayanımının Belirlenmesi. Engineering Sciences, 12(2), 108–116. ISSN: 1308 7231
  • Öz, H. Ö. (2017). Atık Cam Tozu ve Yüksek Fırın Cürufunun İçeren Kendiliğinden Yerleşen Harçların Taze, Mekanik ve Durabilite Özellikleri. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(4), 9–22.
  • Paul, D., Bindhu, K. R., Matos, A. M., & Delgado, J. (2022). Eco-friendly concrete with waste glass powder: A sustainable and circular solution. Construction and Building Materials, 355, 129217. https://doi.org/10.1016/j.conbuildmat.2022.129217
  • Raju, S., & Kumar, P. R. (2014). Effect of using glass powder in concrete. International Journal of Innovative Research in Science, Engineering and Technology, 31, 21–427. ISSN: 2319 8753
  • Saint-Pierre, F., Philibert, A., Giroux, B., & Rivard, P. (2016). Concrete quality designation based on ultrasonic pulse velocity. Construction and Building Materials, 125, 1022–1027. https://doi.org/10.1016/j.conbuildmat.2016.08.158
  • Shayan, A., & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cement and Concrete Research, 36(3), 457–468. https://doi.org/10.1016/j.cemconres.2005.12.012
  • Standard, B. (2004). BS EN 12504-4: 2004: Testing concrete–Part 4: Determination of ultrasonic pulse velocity. London, Reino Unido.
  • TS EN 772-4. (2000). Kagir Birimler, deney metotları–Bölüm 4: Tabii taskâgir birimlerin toplam ve görünen porozitesi ile bosluksuz ve bosluklu birim hacim kütlesinin tayini (Methods of test for masonry units–Part 4: Determination of real and bulk density and of total a. TS EN 772-4 Ankara-Turkey.
  • TS EN 197-1. (2012). Cement - Part 1: General Cements, Composition, Ankara, Türkiye.
  • TS EN 1097–2. (2000). Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler Bölüm 2: Parçalanma Direncinin Tayini İçin Metotlar. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12350-2. (2019). T. beton deneyleri-B. 2: Ç. (slump) deneyi, Türk Standardları Enstitüsü, Ankara, Türkiye.
  • Turkey, F. A., Beddu, S. B., Ahmed, A. N., & Al-Hubboubi, S. K. (2022). Effect of high temperatures on the properties of lightweight geopolymer concrete based fly ash and glass powder mixtures. Case Studies in Construction Materials, 17, e01489. https://doi.org/10.1016/j.cscm.2022.e01489
  • Wu, Z., Lo, S. H., Kang, H. T., & Su, K. L. (2019). High strength concrete tests under elevated temperature. Athens Journal of Τechnology & Engineering. ISSN: 2241-8237
  • Zhang, Y., Aslani, F., & Lehane, B. (2021). Compressive strength of rubberized concrete: Regression and GA-BPNN approaches using ultrasonic pulse velocity. Construction and Building Materials, 307, 124951. https://doi.org/10.1016/j.conbuildmat.2021.124951
  • Zhong, R., Wille, K., & Viegas, R. (2018). Material efficiency in the design of UHPC paste from a life cycle point of view. Construction and Building Materials, 160. https://doi.org/10.1016/j.conbuildmat.2017.11.049
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Construction Materials
Journal Section Civil Engineering
Authors

Tuba Demir 0000-0003-2092-1029

Bahar Demirel 0000-0001-7483-2668

Ayşe Çiğdem Şireci 0000-0001-8465-8624

Publication Date June 3, 2024
Submission Date January 3, 2024
Acceptance Date March 25, 2024
Published in Issue Year 2024Volume: 27 Issue: 2

Cite

APA Demir, T., Demirel, B., & Şireci, A. Ç. (2024). ATIK CAM TOZU KATKILI BETONLARIN YÜKSEK SICAKLIK ALTINDAKİ PERFORMANSLARININ İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 631-642. https://doi.org/10.17780/ksujes.1414159