Research Article
BibTex RIS Cite

DAHİLİ İÇ REFORMER İLE ÇALIŞAN ERİMİŞ KARBONAT YAKIT PİLİNİN (DIR-MCFC) PERFORMANS PARAMETRELERİNİN İNCELENMESİ, ENERJİ VE EKSERJİ ANALİZİ

Year 2024, Volume: 27 Issue: 2, 567 - 578, 03.06.2024
https://doi.org/10.17780/ksujes.1414606

Abstract

Doğrudan İç Reformlu Erimiş Karbonat Yakıt Pilleri (DIR-MCFC), enerji sektöründe oldukça çeşitli uygulamalara yönelik bir çözüm sunarak dikkat çekmektedir. Bu teknoloji, yüksek enerji verimliliği, çeşitli yakıtları kullanma yeteneği ve yüksek sıcaklıklarda kararlı çalışabilme kapasitesi gibi özellikleri ile farklı endüstri alanlarında geniş bir potansiyel sağlamaktadır. DIR-MCFC'lerin termodinamik performansını etkileyen faktörlerin ayrıntılı bir şekilde anlaşılması, bu teknolojinin etkili bir şekilde optimize edilmesi için hayati öneme sahiptir. Bu bağlamda, DIR-MCFC sisteminin kapsamlı modellemesi ve simülasyonu akım yoğunluğu, yakıt kullanım oranı, hücre sıcaklığı ve CO_2 kullanım oranı gibi kritik parametrelerin sistem performansına etkisini anlamak ve geliştirmek için kapsamlı bir çalışma yapılmaktadır. DIR-MCFC'nin analizinde 600°C, 625°C ve 650°C hücre sıcaklıklarında elde ettiği maksimum güç değerleri sırasıyla 18454,26338 kW, 21869,68782 kW ve 24847,2680 kW olarak ölçüldü. Bu çalışma, sabit akım yoğunluğunda hücre sıcaklığındaki artışın enerji ve ekserji verimini artırdığını, en yüksek performansın 625°C'de (%50,15 enerji verimi, %44,91 ekserji verimi) elde edildiğini gösterdi. Maksimum yakıt kullanım oranında (%96) gücü 23512,730 kW olarak enerji ve ekserji verimleri sırasıyla %34,569 ve %30,958 olarak ölçüldü.

References

  • Ajanovic, A., & Haas, R. (2021). Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. International Journal of Hydrogen Energy, 46(16), 10049-10058. https://doi.org/10.1016/J.IJHYDENE.2020.03.122
  • Baranak, M. (2015). Ergimiş Karbonatlı Yakıt Pilinin Modellenmesi. http://hdl.handle.net/11527/10742
  • Brouwer, J., Jabbari, F., Leal, E. M., & Orr, T. (2006). Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation. Journal of Power Sources, 158(1), 213-224. https://doi.org/10.1016/J.JPOWSOUR.2005.07.093
  • Duan, L., Lu, H., Yuan, M., & Lv, Z. (2018). Optimization and part-load performance analysis of MCFC/ST hybrid power system. Energy, 152, 682-693. https://doi.org/10.1016/J.ENERGY.2018.03.178 Fuel Cells | Department of Energy. (t.y.). Geliş tarihi 03 Kasım 2022, gönderen https://www.energy.gov/eere/fuelcells/fuel-cells
  • Ivanova, D., & Wood, R. (2020a). The unequal distribution of household carbon footprints in Europe and its link to sustainability. Global Sustainability, 3. https://doi.org/10.1017/SUS.2020.12
  • Ivanova, D., & Wood, R. (2020b). The unequal distribution of household carbon footprints in Europe and its link to sustainability. Global Sustainability, 3. https://doi.org/10.1017/SUS.2020.12
  • Karatekin, C., İktisadi, U., Bilimler, İ., Tarihi, G., Erdoğan, S., Ve Tabii, E., Bakanlığı, K., İşleri, E., & Müdürlüğü, E. G. (2020). Enerji, Çevre ve Sera Gazları. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(1), 277-303. https://doi.org/10.18074/CKUIIBFD.670673
  • Larminie, J., & Dicks, A. (2013). Medium and High Temperature Fuel Cells. Fuel Cell Systems Explained, 163-228. https://doi.org/10.1002/9781118878330.CH7
  • Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn, J. (2019). Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Applied Sciences, 9(11), 2296. https://doi.org/10.3390/APP9112296
  • Mehmet, M. M., Fbe, Ç., Mühendislii, M., Dalında, A., Hazırlanan, E. P., Danımanı, T., Ükrü Bekdemr, D., & Üniversitesi, Y. T. (2008). Elektrik enerjisi üretimi amacıyla kullanılan değişik tipteki yakıt pillerinin teknik ve ekonomik etüdü. http://dspace.yildiz.edu.tr/xmlui/handle/1/11585
  • Mekhilef, S., Saidur, R., & Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. https://doi.org/10.1016/J.RSER.2011.09.020
  • Molten Carbonate Fuel Cells. (2018). Fuel Cell Systems Explained, 207-234. https://doi.org/10.1002/9781118706992.CH8
  • Moradpoor, I., & Ebrahimi, M. (2019). Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle. Energy, 185, 1005-1016. https://doi.org/10.1016/J.ENERGY.2019.07.112
  • Muñoz De Escalona, J. M., Sánchez, D., Chacartegui, R., & Sánchez, T. (2011). A step-by-step methodology to construct a model of performance of molten carbonate fuel cells with internal reforming. International Journal of Hydrogen Energy, 36(24), 15739-15751. https://doi.org/10.1016/J.IJHYDENE.2011.08.094
  • Olabi, A. G., Wilberforce, T., & Abdelkareem, M. A. (2021). Fuel cell application in the automotive industry and future perspective. Energy, 214, 118955. https://doi.org/10.1016/J.ENERGY.2020.118955
  • Ovrum, E., & Dimopoulos, G. (2012). A validated dynamic model of the first marine molten carbonate fuel cell. Applied Thermal Engineering, 35(1), 15-28. https://doi.org/10.1016/J.APPLTHERMALENG.2011.09.023
  • Sharaf, O. Z., & Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810-853. https://doi.org/10.1016/J.RSER.2014.01.012
  • Souleymane, C., Zhao, J., & Li, W. (2022). Efficient utilization of waste heat from molten carbonate fuel cell in parabolic trough power plant for electricity and hydrogen coproduction. International Journal of Hydrogen Energy, 47(1), 81-91. https://doi.org/10.1016/J.IJHYDENE.2021.09.210
  • The State of the World’s Forests 2020. (2020). The State of the World’s Forests 2020. https://doi.org/10.4060/CA8642EN
  • Thounthong, P., Davat, B., Raël, S., & Sethakul, P. (2009). Fuel cell high-power applications. IEEE Industrial Electronics Magazine, 3(1), 32-46. https://doi.org/10.1109/MIE.2008.930365
  • Wang, J. (2015). Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy, 80, 509-521. https://doi.org/10.1016/J.ENERGY.2014.12.007
  • Wang, J., Wang, H., & Fan, Y. (2018). Techno-Economic Challenges of Fuel Cell Commercialization. Engineering, 4(3), 352-360. https://doi.org/10.1016/J.ENG.2018.05.007
  • Wee, J. H. (2014). Carbon dioxide emission reduction using molten carbonate fuel cell systems. Renewable and Sustainable Energy Reviews, 32, 178-191. https://doi.org/10.1016/J.RSER.2014.01.034
  • Fichera, A., Samanta, S., & Volpe, R. (2022). Exergetic analysis of a natural gas combined-cycle power plant with a molten carbonate fuel cell for carbon capture. Sustainability, 14(1), 533.
  • Vatani, A., Khazaeli, A., Roshandel, R., & Panjeshahi, M. H. (2013). Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer. Energy Conversion and Management, 67, 197-207.

INVESTIGATION OF PERFORMANCE PARAMETERS, ENERGY AND EXERGY ANALYSIS OF MOLTEN CARBONATE FUEL CELL (DIR-MCFC) WORKING WITH INTERNAL REFORMER

Year 2024, Volume: 27 Issue: 2, 567 - 578, 03.06.2024
https://doi.org/10.17780/ksujes.1414606

Abstract

Direct Internal Reformed Molten Carbonate Fuel Cells (DIR-MCFC) stand out in the energy sector by offering a solution for a wide range of applications. This technology offers a wide potential in different industrial fields with its high energy efficiency, ability to utilize various fuels and stable operation at high temperatures. A detailed understanding of the factors affecting the thermodynamic performance of DIR-MCFCs is vital for effective optimization of this technology. In this context, extensive modeling and simulation of the DIR-MCFC system has been extensively studied to understand and improve the impact of critical parameters such as current density, fuel utilization rate, cell temperature and CO2 utilization rate on the system performance. In the analysis of the DIR-MCFC, the maximum power values obtained at 600°C, 625°C and 650°C cell temperatures were measured as 18454.26338 kW, 21869.68782 kW and 24847.2680 kW, respectively. This study showed that increasing the cell temperature at constant current density increases the energy and exergy efficiency, with the highest performance achieved at 625°C (50.15% energy efficiency, 44.91% exergy efficiency). At maximum fuel utilization rate (96%), the power was 23512,730 kW with energy and exergy efficiencies of 34.569% and 30.958%, respectively.

References

  • Ajanovic, A., & Haas, R. (2021). Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. International Journal of Hydrogen Energy, 46(16), 10049-10058. https://doi.org/10.1016/J.IJHYDENE.2020.03.122
  • Baranak, M. (2015). Ergimiş Karbonatlı Yakıt Pilinin Modellenmesi. http://hdl.handle.net/11527/10742
  • Brouwer, J., Jabbari, F., Leal, E. M., & Orr, T. (2006). Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation. Journal of Power Sources, 158(1), 213-224. https://doi.org/10.1016/J.JPOWSOUR.2005.07.093
  • Duan, L., Lu, H., Yuan, M., & Lv, Z. (2018). Optimization and part-load performance analysis of MCFC/ST hybrid power system. Energy, 152, 682-693. https://doi.org/10.1016/J.ENERGY.2018.03.178 Fuel Cells | Department of Energy. (t.y.). Geliş tarihi 03 Kasım 2022, gönderen https://www.energy.gov/eere/fuelcells/fuel-cells
  • Ivanova, D., & Wood, R. (2020a). The unequal distribution of household carbon footprints in Europe and its link to sustainability. Global Sustainability, 3. https://doi.org/10.1017/SUS.2020.12
  • Ivanova, D., & Wood, R. (2020b). The unequal distribution of household carbon footprints in Europe and its link to sustainability. Global Sustainability, 3. https://doi.org/10.1017/SUS.2020.12
  • Karatekin, C., İktisadi, U., Bilimler, İ., Tarihi, G., Erdoğan, S., Ve Tabii, E., Bakanlığı, K., İşleri, E., & Müdürlüğü, E. G. (2020). Enerji, Çevre ve Sera Gazları. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(1), 277-303. https://doi.org/10.18074/CKUIIBFD.670673
  • Larminie, J., & Dicks, A. (2013). Medium and High Temperature Fuel Cells. Fuel Cell Systems Explained, 163-228. https://doi.org/10.1002/9781118878330.CH7
  • Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn, J. (2019). Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Applied Sciences, 9(11), 2296. https://doi.org/10.3390/APP9112296
  • Mehmet, M. M., Fbe, Ç., Mühendislii, M., Dalında, A., Hazırlanan, E. P., Danımanı, T., Ükrü Bekdemr, D., & Üniversitesi, Y. T. (2008). Elektrik enerjisi üretimi amacıyla kullanılan değişik tipteki yakıt pillerinin teknik ve ekonomik etüdü. http://dspace.yildiz.edu.tr/xmlui/handle/1/11585
  • Mekhilef, S., Saidur, R., & Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. https://doi.org/10.1016/J.RSER.2011.09.020
  • Molten Carbonate Fuel Cells. (2018). Fuel Cell Systems Explained, 207-234. https://doi.org/10.1002/9781118706992.CH8
  • Moradpoor, I., & Ebrahimi, M. (2019). Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle. Energy, 185, 1005-1016. https://doi.org/10.1016/J.ENERGY.2019.07.112
  • Muñoz De Escalona, J. M., Sánchez, D., Chacartegui, R., & Sánchez, T. (2011). A step-by-step methodology to construct a model of performance of molten carbonate fuel cells with internal reforming. International Journal of Hydrogen Energy, 36(24), 15739-15751. https://doi.org/10.1016/J.IJHYDENE.2011.08.094
  • Olabi, A. G., Wilberforce, T., & Abdelkareem, M. A. (2021). Fuel cell application in the automotive industry and future perspective. Energy, 214, 118955. https://doi.org/10.1016/J.ENERGY.2020.118955
  • Ovrum, E., & Dimopoulos, G. (2012). A validated dynamic model of the first marine molten carbonate fuel cell. Applied Thermal Engineering, 35(1), 15-28. https://doi.org/10.1016/J.APPLTHERMALENG.2011.09.023
  • Sharaf, O. Z., & Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810-853. https://doi.org/10.1016/J.RSER.2014.01.012
  • Souleymane, C., Zhao, J., & Li, W. (2022). Efficient utilization of waste heat from molten carbonate fuel cell in parabolic trough power plant for electricity and hydrogen coproduction. International Journal of Hydrogen Energy, 47(1), 81-91. https://doi.org/10.1016/J.IJHYDENE.2021.09.210
  • The State of the World’s Forests 2020. (2020). The State of the World’s Forests 2020. https://doi.org/10.4060/CA8642EN
  • Thounthong, P., Davat, B., Raël, S., & Sethakul, P. (2009). Fuel cell high-power applications. IEEE Industrial Electronics Magazine, 3(1), 32-46. https://doi.org/10.1109/MIE.2008.930365
  • Wang, J. (2015). Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy, 80, 509-521. https://doi.org/10.1016/J.ENERGY.2014.12.007
  • Wang, J., Wang, H., & Fan, Y. (2018). Techno-Economic Challenges of Fuel Cell Commercialization. Engineering, 4(3), 352-360. https://doi.org/10.1016/J.ENG.2018.05.007
  • Wee, J. H. (2014). Carbon dioxide emission reduction using molten carbonate fuel cell systems. Renewable and Sustainable Energy Reviews, 32, 178-191. https://doi.org/10.1016/J.RSER.2014.01.034
  • Fichera, A., Samanta, S., & Volpe, R. (2022). Exergetic analysis of a natural gas combined-cycle power plant with a molten carbonate fuel cell for carbon capture. Sustainability, 14(1), 533.
  • Vatani, A., Khazaeli, A., Roshandel, R., & Panjeshahi, M. H. (2013). Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer. Energy Conversion and Management, 67, 197-207.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Mechanical Engineering
Authors

Elvan Demiryürek 0009-0002-9323-5206

Yıldız Koç 0000-0002-2219-645X

Özkan Köse 0000-0002-9069-1989

Hüseyin Yağlı 0000-0002-9777-0698

Publication Date June 3, 2024
Submission Date January 4, 2024
Acceptance Date March 27, 2024
Published in Issue Year 2024Volume: 27 Issue: 2

Cite

APA Demiryürek, E., Koç, Y., Köse, Ö., Yağlı, H. (2024). DAHİLİ İÇ REFORMER İLE ÇALIŞAN ERİMİŞ KARBONAT YAKIT PİLİNİN (DIR-MCFC) PERFORMANS PARAMETRELERİNİN İNCELENMESİ, ENERJİ VE EKSERJİ ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 567-578. https://doi.org/10.17780/ksujes.1414606