Review
BibTex RIS Cite

ADVANCES IN DYE REMOVAL FROM WASTEWATER: ADSORPTION TECHNOLOGY AND FUTURE PROSPECTS

Year 2024, Volume: 27 Issue: 4, 1544 - 1556, 03.12.2024
https://doi.org/10.17780/ksujes.1470859

Abstract

The contamination of water sources with dyes poses a significant problem for both human health and the environment. In recent times, the use of adsorption technology has emerged as a promising approach for removing dyes from water due to its effectiveness and cost-efficiency. This review article provides a comprehensive overview of the advancements in the removal of dyes from water through adsorption processes. Various adsorbents, including both natural and synthetic materials, have been examined for their capacities in removing dyes from water. The underlying mechanisms of adsorption interactions are elucidated and the factors influencing dye removal efficiency are discussed. The expectations for future developments in dye removal from water through adsorption are thoroughly explored, emphasizing the need for sustainable and scalable solutions. Suggestions for the integration of new materials, process optimization, and the development of hybrid technologies are proposed in order to overcome current challenges and enhance the overall efficiency of dye removal. This comprehensive evaluation of the progress and future trends in adsorption-based dye removal provides valuable insights for researchers, policy makers, and practitioners working towards the goal of providing safe and accessible drinking water for all.

References

  • Adeleye, A. T., Bahar, M. M., Megharaj, M., & Rahman, M. M. (2023). Recent developments and mechanistic insights on adsorption technology for micro- and nanoplastics removal in aquatic environments. Journal of Water Process Engineering, 53, 103777. https://doi.org/10.1016/j.jwpe.2023.103777
  • Ahmed, M. A., Ahmed, M. A., & Mohamed, A. A. (2023). Synthesis, characterization and application of chitosan/graphene oxide/copper ferrite nanocomposite for the adsorptive removal of anionic and cationic dyes from wastewater. RSC Advances, 13(8), 5337–5352. https://doi.org/10.1039/D2RA07883J
  • Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, M. A., Inayat, A., Mahlia, T. M. I., Ong, H. C., Chia, W. Y., & Show, P. L. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of Hazardous Materials, 416, 125912. https://doi.org/10.1016/j.jhazmat.2021.125912
  • Al-Asheh, S., Bagheri, M., & Aidan, A. (2021). Membrane bioreactor for wastewater treatment: A review. Case Studies in Chemical and Environmental Engineering, 4, 100109. https://doi.org/10.1016/j.cscee.2021.100109
  • Alagha, O., Manzar, M. S., Zubair, M., Anil, I., Mu’azu, N. D., & Qureshi, A. (2020). Magnetic Mg-Fe/LDH Intercalated Activated Carbon Composites for Nitrate and Phosphate Removal from Wastewater: Insight into Behavior and Mechanisms. Nanomaterials, 10(7), 1361. https://doi.org/10.3390/nano10071361
  • Alardhi, S. M., Fiyadh, S. S., Salman, A. D., & Adelikhah, M. (2023). Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon, 9(1), e12888. https://doi.org/10.1016/j.heliyon.2023.e12888
  • Aljohani, M. M., Al-Qahtani, S. D., Alshareef, M., El-Desouky, M. G., El-Bindary, A. A., El-Metwaly, N. M., & El-Bindary, M. A. (2023). Highly efficient adsorption and removal bio-staining dye from industrial wastewater onto mesoporous Ag-MOFs. Process Safety and Environmental Protection, 172, 395–407. https://doi.org/10.1016/j.psep.2023.02.036
  • Arslan, D. Ş., Ertap, H., Şenol, Z. M., El Messaoudi, N., & Mehmeti, V. (2024). Preparation of Polyacrylamide Titanium Dioxide Hybrid Nanocomposite by Direct Polymerization and Its Applicability in Removing Crystal Violet from Aqueous Solution. Journal of Polymers and the Environment, 32(2), 573–587. https://doi.org/10.1007/s10924-023-03004-8
  • Azari, A., Nabizadeh, R., Mahvi, A. H., & Nasseri, S. (2023). Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: adsorption modelling and process optimisation by central composite face-central design. International Journal of Environmental Analytical Chemistry, 103(7), 1509–1529. https://doi.org/10.1080/03067319.2021.1877279
  • Azimi, B., Abdollahzadeh-Sharghi, E., & Bonakdarpour, B. (2021). Anaerobic-aerobic processes for the treatment of textile dyeing wastewater containing three commercial reactive azo dyes: Effect of number of stages and bioreactor type. Chinese Journal of Chemical Engineering, 39, 228–239. https://doi.org/10.1016/j.cjche.2020.10.006
  • Baskar, A. V., Bolan, N., Hoang, S. A., Sooriyakumar, P., Kumar, M., Singh, L., Jasemizad, T., Padhye, L. P., Singh, G., Vinu, A., Sarkar, B., Kirkham, M. B., Rinklebe, J., Wang, S., Wang, H., Balasubramanian, R., & Siddique, K. H. M. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of The Total Environment, 822, 153555. https://doi.org/10.1016/j.scitotenv.2022.153555
  • Baytar, O., Şahin, Ö., Saka, C., & Ağrak, S. (2018). Characterization of Microwave and Conventional Heating on the Pyrolysis of Pistachio Shells for the Adsorption of Methylene Blue and Iodine. Analytical Letters, 51(14), 2205–2220. https://doi.org/10.1080/00032719.2017.1415920
  • Bhat, S., Uthappa, U. T., Sadhasivam, T., Altalhi, T., Soo Han, S., & Kurkuri, M. D. (2023). Abundant cilantro derived high surface area activated carbon (AC) for superior adsorption performances of cationic/anionic dyes and supercapacitor application. Chemical Engineering Journal, 459, 141577. https://doi.org/10.1016/j.cej.2023.141577
  • Bonetta, S., Pignata, C., Bonetta, S., Amagliani, G., Brandi, G., Gilli, G., & Carraro, E. (2021). Comparison of UV, Peracetic Acid and Sodium Hypochlorite Treatment in the Disinfection of Urban Wastewater. Pathogens, 10(2), 182. https://doi.org/10.3390/pathogens10020182
  • Chen, Q., Zhang, Q., Yang, Y., Wang, Q., He, Y., & Dong, N. (2021). Synergetic effect on methylene blue adsorption to biochar with gentian violet in dyeing and printing wastewater under competitive adsorption mechanism. Case Studies in Thermal Engineering, 26, 101099. https://doi.org/10.1016/j.csite.2021.101099
  • Chequer, F. M. D., Angeli, J. P. F., Ferraz, E. R. A., Tsuboy, M. S., Marcarini, J. C., Mantovani, M. S., & de Oliveira, D. P. (2009). The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1–2), 83–86. https://doi.org/10.1016/j.mrgentox.2009.04.004
  • Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17(1), 195–213. https://doi.org/10.1007/s10311-018-0786-8
  • da Silva, A. F. V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., & de Oliveira, J. V. (2023). Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. Journal of Water Process Engineering, 53, 103743. https://doi.org/10.1016/j.jwpe.2023.103743
  • Daverey, A., Pandey, D., Verma, P., Verma, S., Shah, V., Dutta, K., & Arunachalam, K. (2019). Recent advances in energy efficient biological treatment of municipal wastewater. Bioresource Technology Reports, 7, 100252. https://doi.org/10.1016/j.biteb.2019.100252
  • Deniz, F., & Yildiz, H. (2019a). Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution. International Journal of Phytoremediation, 21(3), 259–267. https://doi.org/10.1080/15226514.2018.1524451
  • Deniz, F., & Yildiz, H. (2019b). Taguchi DoE methodology for modeling of synthetic dye biosorption from aqueous effluents: parametric and phenomenological studies. International Journal of Phytoremediation, 21(11), 1065–1071. https://doi.org/10.1080/15226514.2019.1594687
  • Dinçer, A. R. (2020). Increasing BOD5/COD ratio of non-biodegradable compound (reactive black 5) with ozone and catalase enzyme combination. SN Applied Sciences, 2(4), 736. https://doi.org/10.1007/s42452-020-2557-y
  • Dolas, H. (2023). Activated carbon synthesis and methylene blue adsorption from pepper stem using microwave assisted impregnation method: Isotherm and kinetics. Journal of King Saud University - Science, 35(3), 102559. https://doi.org/10.1016/j.jksus.2023.102559
  • dos Reis, G. S., Bergna, D., Grimm, A., Lima, E. C., Hu, T., Naushad, M., & Lassi, U. (2023). Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 669, 131493. https://doi.org/10.1016/j.colsurfa.2023.131493
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2(14), 4497–4531. https://doi.org/10.1039/D1MA00354B
  • El Messaoudi, N., Ciğeroğlu, Z., Şenol, Z. M., Bouich, A., Kazan-Kaya, E. S., Noureen, L., & Américo-Pinheiro, J. H. P. (2024). Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption (ss. 305–345). https://doi.org/10.1016/bs.apmp.2023.06.016
  • Elfving, J., Kauppinen, J., Jegoroff, M., Ruuskanen, V., Järvinen, L., & Sainio, T. (2021). Experimental comparison of regeneration methods for CO2 concentration from air using amine-based adsorbent. Chemical Engineering Journal, 404, 126337. https://doi.org/10.1016/j.cej.2020.126337
  • Feuzer-Matos, A. J., Testolin, R. C., Pimentel-Almeida, W., Radetski-Silva, R., Deomar-Simões, M. J., Poyer-Radetski, L., Ariente-Neto, R., Batista-Barwinski, M. J., Somensi, C. A., & Radetski, C. M. (2022). Treatment of Wastewater Containing New and Non-biodegradable Textile Dyes: Efficacy of Combined Advanced Oxidation and Adsorption Processes. Water, Air, & Soil Pollution, 233(7), 273. https://doi.org/10.1007/s11270-022-05751-1
  • Fiyadh, S. S., Alardhi, S. M., Al Omar, M., Aljumaily, M. M., Al Saadi, M. A., Fayaed, S. S., Ahmed, S. N., Salman, A. D., Abdalsalm, A. H., Jabbar, N. M., & El-Shafi, A. (2023). A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique. Heliyon, 9(4), e15455. https://doi.org/10.1016/j.heliyon.2023.e15455
  • Genli, N., Kutluay, S., Baytar, O., & Şahin, Ö. (2022). Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. International Journal of Phytoremediation, 24(1), 88–100. https://doi.org/10.1080/15226514.2021.1926911
  • Ghernaout, D., Elboughdiri, N., & Ghareba, S. (2020). Fenton Technology for Wastewater Treatment: Dares and Trends. OALib, 07(01), 1–26. https://doi.org/10.4236/oalib.1106045
  • Gupta, S. A., Vishesh, Y., Sarvshrestha, N., Bhardwaj, A. S., Kumar, P. A., Topare, N. S., Raut-Jadhav, S., Bokil, S. A., & Khan, A. (2021). Adsorption isotherm studies of Methylene blue using activated carbon of waste fruit peel as an adsorbent. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.12.044
  • Han, Y., Yang, L., Chen, X., Cai, Y., Zhang, X., Qian, M., Chen, X., Zhao, H., Sheng, M., Cao, G., & Shen, G. (2020). Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation. Science of The Total Environment, 709, 136094. https://doi.org/10.1016/j.scitotenv.2019.136094
  • Homaeigohar, S. (2020). The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials, 10(2), 295. https://doi.org/10.3390/nano10020295
  • Hube, S., Eskafi, M., Hrafnkelsdóttir, K. F., Bjarnadóttir, B., Bjarnadóttir, M. Á., Axelsdóttir, S., & Wu, B. (2020). Direct membrane filtration for wastewater treatment and resource recovery: A review. Science of The Total Environment, 710, 136375. https://doi.org/10.1016/j.scitotenv.2019.136375
  • Imessaoudene, A., Cheikh, S., Hadadi, A., Hamri, N., Bollinger, J.-C., Amrane, A., Tahraoui, H., Manseri, A., & Mouni, L. (2023). Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations, 10(1), 57. https://doi.org/10.3390/separations10010057
  • İzgi, M. S., Saka, C., Baytar, O., Saraçoğlu, G., & Şahin, Ö. (2019). Preparation and Characterization of Activated Carbon from Microwave and Conventional Heated Almond Shells Using Phosphoric Acid Activation. Analytical Letters, 52(5), 772–789. https://doi.org/10.1080/00032719.2018.1495223
  • Karcher, S., Kornmüller, A., & Jekel, M. (2002). Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Research, 36(19), 4717–4724. https://doi.org/10.1016/S0043-1354(02)00195-1
  • Kasbaji, M., Mennani, M., Grimi, N., Oubenali, M., Mbarki, M., EL Zakhem, H., & Moubarik, A. (2023). Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. International Journal of Biological Macromolecules, 239, 124288. https://doi.org/10.1016/j.ijbiomac.2023.124288
  • Kausar, A., Zohra, S. T., Ijaz, S., Iqbal, M., Iqbal, J., Bibi, I., Nouren, S., El Messaoudi, N., & Nazir, A. (2023). Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. International Journal of Biological Macromolecules, 224, 1337–1355. https://doi.org/10.1016/j.ijbiomac.2022.10.220
  • Key, S., Ryan, P. G., Gabbott, S. E., Allen, J., & Abbott, A. P. (2024). Influence of colourants on environmental degradation of plastic litter. Environmental Pollution, 347, 123701. https://doi.org/10.1016/j.envpol.2024.123701 khalidi-idrissi, A., Madinzi, A., Anouzla, A., Pala, A., Mouhir, L., Kadmi, Y., & Souabi, S. (2023). Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. International Journal of Environmental Science and Technology, 20(10), 11719–11740. https://doi.org/10.1007/s13762-023-04867-z
  • Kozyatnyk, I., Yacout, D. M. M., Van Caneghem, J., & Jansson, S. (2020). Comparative environmental assessment of end-of-life carbonaceous water treatment adsorbents. Bioresource Technology, 302, 122866. https://doi.org/10.1016/j.biortech.2020.122866
  • Kumari, P., & Kumar, A. (2023). ADVANCED OXIDATION PROCESS: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces, 11, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122
  • Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504. https://doi.org/10.1016/j.cherd.2016.02.006
  • Largo, F., Haounati, R., Ouachtak, H., Hafid, N., Jada, A., & Addi, A. A. (2023). Design of organically modified sepiolite and its use as adsorbent for hazardous Malachite Green dye removal from water. Water, Air, & Soil Pollution, 234(3), 183. https://doi.org/10.1007/s11270-023-06185-z
  • Lim, S., Shi, J. L., von Gunten, U., & McCurry, D. L. (2022). Ozonation of organic compounds in water and wastewater: A critical review. Water Research, 213, 118053. https://doi.org/10.1016/j.watres.2022.118053
  • Masula, K., Bhongiri, Y., Raghav Rao, G., Vijay Kumar, P., Pola, S., & Basude, M. (2022). Evolution of photocatalytic activity of CeO2–Bi2O3 composite material for wastewater degradation under visible-light irradiation. Optical Materials, 126, 112201. https://doi.org/10.1016/j.optmat.2022.112201
  • Mogharbel, R. T., Alkhamis, K., Felaly, R., El-Desouky, M. G., El-Bindary, A. A., El-Metwaly, N. M., & El-Bindary, M. A. (2023). Superior adsorption and removal of industrial dye from aqueous solution via magnetic silver metal-organic framework nanocomposite. Environmental Technology, 1–17. https://doi.org/10.1080/09593330.2023.2178331
  • Operti, M. C., Bernhardt, A., Grimm, S., Engel, A., Figdor, C. G., & Tagit, O. (2021). PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. International Journal of Pharmaceutics, 605, 120807. https://doi.org/10.1016/j.ijpharm.2021.120807
  • Othmani, A., Kesraoui, A., Boada, R., Seffen, M., & Valiente, M. (2019). Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current. Water, 11(7), 1326. https://doi.org/10.3390/w11071326
  • Qazi, R. A., Ullah, N., Bibi, N., Khattak, R., Jamila, N., Begum, B., Aman, N., Rahayu, F., & Karami, A. M. (2023). Amine-Functionalized MWCNTs for the Removal of Mordant Black 11 Dye. Water, Air, & Soil Pollution, 234(10), 644. https://doi.org/10.1007/s11270-023-06662-5
  • Quansah, J. O., Hlaing, T., Lyonga, F. N., Kyi, P. P., Hong, S.-H., Lee, C.-G., & Park, S.-J. (2020). Nascent Rice Husk as an Adsorbent for Removing Cationic Dyes from Textile Wastewater. Applied Sciences, 10(10), 3437. https://doi.org/10.3390/app10103437
  • Rajoria, S., Vashishtha, M., & Sangal, V. K. (2021). Review on the treatment of electroplating industry wastewater by electrochemical methods. Materials Today: Proceedings, 47, 1472–1479. https://doi.org/10.1016/j.matpr.2021.04.165
  • Rehan, A. I., Rasee, A. I., Awual, M. E., Waliullah, R. M., Hossain, M. S., Kubra, K. T., Salman, M. S., Hasan, M. M., Hasan, M. N., Sheikh, M. C., Marwani, H. M., Khaleque, M. A., Islam, A., & Awual, M. R. (2023). Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 673, 131859. https://doi.org/10.1016/j.colsurfa.2023.131859
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
  • Salman, M. S., Sheikh, M. C., Hasan, M. M., Hasan, M. N., Kubra, K. T., Rehan, A. I., Awual, M. E., Rasee, A. I., Waliullah, R. M., Hossain, M. S., Khaleque, M. A., Alsukaibi, A. K. D., Alshammari, H. M., & Awual, M. R. (2023). Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Applied Surface Science, 622, 157008. https://doi.org/10.1016/j.apsusc.2023.157008
  • Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034
  • Sasmaz, M., Senel, G. U., & Obek, E. (2021). Boron Bioaccumulation by the Dominant Macrophytes Grown in Various Discharge Water Environments. Bulletin of Environmental Contamination and Toxicology, 106(6), 1050–1058. https://doi.org/10.1007/s00128-021-03222-7
  • Shabir, F., Sultan, M., Miyazaki, T., Saha, B. B., Askalany, A., Ali, I., Zhou, Y., Ahmad, R., & Shamshiri, R. R. (2020). Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renewable and Sustainable Energy Reviews, 119, 109630. https://doi.org/10.1016/j.rser.2019.109630
  • Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154–169. https://doi.org/10.1016/j.coelec.2020.05.009
  • Sharifi Pajaie, S. H., Archin, S., & Asadpour, G. (2018). Optimization of Process Parameters by Response Surface Methodology for Methylene Blue Removal Using Cellulose Dusts. Civil Engineering Journal, 4(3), 620. https://doi.org/10.28991/cej-0309121
  • Sharma, J., Sharma, S., & Soni, V. (2021). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. https://doi.org/10.1016/j.rsma.2021.101802
  • Suzuki, M., Suzuki, Y., Uzuka, K., & Kawase, Y. (2020). Biological treatment of non-biodegradable azo-dye enhanced by zero-valent iron (ZVI) pre-treatment. Chemosphere, 259, 127470. https://doi.org/10.1016/j.chemosphere.2020.127470
  • Swanckaert, B., Geltmeyer, J., Rabaey, K., De Buysser, K., Bonin, L., & De Clerck, K. (2022). A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Separation and Purification Technology, 287, 120529. https://doi.org/10.1016/j.seppur.2022.120529
  • Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017, 1–10. https://doi.org/10.1155/2017/8404965
  • United Nations. (2019). World Population Prospects 2019 Highlights.
  • Vasiraja, N., Saravana Sathiya Prabhahar, R., & Joshua, A. (2023). Preparation and Physio–Chemical characterisation of activated carbon derived from prosopis juliflora stem for the removal of methylene blue dye and heavy metal containing textile industry effluent. Journal of Cleaner Production, 397, 136579. https://doi.org/10.1016/j.jclepro.2023.136579
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
  • Yildiz, H., Gülşen, H., Şahin, Ö., Baytar, O., & Kutluay, S. (2023). Novel adsorbent for malachite green from okra stalks waste: synthesis, kinetics and equilibrium studies. International Journal of Phytoremediation, 1–13. https://doi.org/10.1080/15226514.2023.2243621
  • Yildiz, H., & Yuksel, A. Y. (2023). Novel Adsorbent for Methylene Blue from Waste Fish Scales (Cyprinus Carpio): Kinetics and Equilibrium Studies. Environmental Engineering and Management Journal, 22(6), 1073–1080. https://doi.org/10.30638/eemj.2023.088
  • Yildiz, H., & Yüksel, A. Y. (2024). A novel biosorbent material from waste fish scales (Cyprinus carpio) for biosorption of toxic dyes in aquatic environments. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-024-05900-y
  • Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365. https://doi.org/10.1016/j.envpol.2019.05.072

ATIKSUDAN BOYA GİDERİMİNDEKİ GELİŞMELER: ADSORPSİYON TEKNOLOJİSİ VE GELECEĞE YÖNELİK BEKLENTİLER

Year 2024, Volume: 27 Issue: 4, 1544 - 1556, 03.12.2024
https://doi.org/10.17780/ksujes.1470859

Abstract

Su kaynaklarının boyalarla kirlenmesi hem insan sağlığı hem de çevre için önemli bir sorun teşkil etmektedir. Son zamanlarda, adsorpsiyon teknolojisinin kullanımı, etkinliği ve maliyet verimliliği nedeniyle boyaların sudan uzaklaştırılması için umut verici bir yaklaşım olarak ortaya çıkmıştır. Bu derleme makalesi, adsorpsiyon süreçleri yoluyla boyaların sudan uzaklaştırılmasındaki gelişmelere kapsamlı bir genel bakış sunmaktadır. Hem doğal hem de sentetik malzemeler dahil olmak üzere çeşitli adsorbanlar, boyaları sudan uzaklaştırma kapasiteleri açısından incelenmiştir. Adsorpsiyon etkileşimlerinin altında yatan mekanizmalar aydınlatılmış ve boya giderme verimliliğini etkileyen faktörler tartışılmıştır. Adsorpsiyon yoluyla sudan boya gideriminde gelecekteki gelişmeler için beklentiler, sürdürülebilir ve ölçeklenebilir çözümlere duyulan ihtiyaç vurgulanarak kapsamlı bir şekilde araştırılmıştır. Mevcut zorlukların üstesinden gelmek ve boya gideriminin genel verimliliğini artırmak için yeni malzemelerin entegrasyonu, proses optimizasyonu ve hibrit teknolojilerin geliştirilmesi için öneriler sunulmuştur. Adsorpsiyona dayalı boya giderimindeki ilerlemenin ve gelecekteki eğilimlerin bu kapsamlı değerlendirmesi, herkes için güvenli ve erişilebilir içme suyu sağlama hedefi doğrultusunda çalışan araştırmacılar, politika yapıcılar ve uygulayıcılar için değerli bilgiler sağlamaktadır.

References

  • Adeleye, A. T., Bahar, M. M., Megharaj, M., & Rahman, M. M. (2023). Recent developments and mechanistic insights on adsorption technology for micro- and nanoplastics removal in aquatic environments. Journal of Water Process Engineering, 53, 103777. https://doi.org/10.1016/j.jwpe.2023.103777
  • Ahmed, M. A., Ahmed, M. A., & Mohamed, A. A. (2023). Synthesis, characterization and application of chitosan/graphene oxide/copper ferrite nanocomposite for the adsorptive removal of anionic and cationic dyes from wastewater. RSC Advances, 13(8), 5337–5352. https://doi.org/10.1039/D2RA07883J
  • Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, M. A., Inayat, A., Mahlia, T. M. I., Ong, H. C., Chia, W. Y., & Show, P. L. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of Hazardous Materials, 416, 125912. https://doi.org/10.1016/j.jhazmat.2021.125912
  • Al-Asheh, S., Bagheri, M., & Aidan, A. (2021). Membrane bioreactor for wastewater treatment: A review. Case Studies in Chemical and Environmental Engineering, 4, 100109. https://doi.org/10.1016/j.cscee.2021.100109
  • Alagha, O., Manzar, M. S., Zubair, M., Anil, I., Mu’azu, N. D., & Qureshi, A. (2020). Magnetic Mg-Fe/LDH Intercalated Activated Carbon Composites for Nitrate and Phosphate Removal from Wastewater: Insight into Behavior and Mechanisms. Nanomaterials, 10(7), 1361. https://doi.org/10.3390/nano10071361
  • Alardhi, S. M., Fiyadh, S. S., Salman, A. D., & Adelikhah, M. (2023). Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon, 9(1), e12888. https://doi.org/10.1016/j.heliyon.2023.e12888
  • Aljohani, M. M., Al-Qahtani, S. D., Alshareef, M., El-Desouky, M. G., El-Bindary, A. A., El-Metwaly, N. M., & El-Bindary, M. A. (2023). Highly efficient adsorption and removal bio-staining dye from industrial wastewater onto mesoporous Ag-MOFs. Process Safety and Environmental Protection, 172, 395–407. https://doi.org/10.1016/j.psep.2023.02.036
  • Arslan, D. Ş., Ertap, H., Şenol, Z. M., El Messaoudi, N., & Mehmeti, V. (2024). Preparation of Polyacrylamide Titanium Dioxide Hybrid Nanocomposite by Direct Polymerization and Its Applicability in Removing Crystal Violet from Aqueous Solution. Journal of Polymers and the Environment, 32(2), 573–587. https://doi.org/10.1007/s10924-023-03004-8
  • Azari, A., Nabizadeh, R., Mahvi, A. H., & Nasseri, S. (2023). Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: adsorption modelling and process optimisation by central composite face-central design. International Journal of Environmental Analytical Chemistry, 103(7), 1509–1529. https://doi.org/10.1080/03067319.2021.1877279
  • Azimi, B., Abdollahzadeh-Sharghi, E., & Bonakdarpour, B. (2021). Anaerobic-aerobic processes for the treatment of textile dyeing wastewater containing three commercial reactive azo dyes: Effect of number of stages and bioreactor type. Chinese Journal of Chemical Engineering, 39, 228–239. https://doi.org/10.1016/j.cjche.2020.10.006
  • Baskar, A. V., Bolan, N., Hoang, S. A., Sooriyakumar, P., Kumar, M., Singh, L., Jasemizad, T., Padhye, L. P., Singh, G., Vinu, A., Sarkar, B., Kirkham, M. B., Rinklebe, J., Wang, S., Wang, H., Balasubramanian, R., & Siddique, K. H. M. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of The Total Environment, 822, 153555. https://doi.org/10.1016/j.scitotenv.2022.153555
  • Baytar, O., Şahin, Ö., Saka, C., & Ağrak, S. (2018). Characterization of Microwave and Conventional Heating on the Pyrolysis of Pistachio Shells for the Adsorption of Methylene Blue and Iodine. Analytical Letters, 51(14), 2205–2220. https://doi.org/10.1080/00032719.2017.1415920
  • Bhat, S., Uthappa, U. T., Sadhasivam, T., Altalhi, T., Soo Han, S., & Kurkuri, M. D. (2023). Abundant cilantro derived high surface area activated carbon (AC) for superior adsorption performances of cationic/anionic dyes and supercapacitor application. Chemical Engineering Journal, 459, 141577. https://doi.org/10.1016/j.cej.2023.141577
  • Bonetta, S., Pignata, C., Bonetta, S., Amagliani, G., Brandi, G., Gilli, G., & Carraro, E. (2021). Comparison of UV, Peracetic Acid and Sodium Hypochlorite Treatment in the Disinfection of Urban Wastewater. Pathogens, 10(2), 182. https://doi.org/10.3390/pathogens10020182
  • Chen, Q., Zhang, Q., Yang, Y., Wang, Q., He, Y., & Dong, N. (2021). Synergetic effect on methylene blue adsorption to biochar with gentian violet in dyeing and printing wastewater under competitive adsorption mechanism. Case Studies in Thermal Engineering, 26, 101099. https://doi.org/10.1016/j.csite.2021.101099
  • Chequer, F. M. D., Angeli, J. P. F., Ferraz, E. R. A., Tsuboy, M. S., Marcarini, J. C., Mantovani, M. S., & de Oliveira, D. P. (2009). The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1–2), 83–86. https://doi.org/10.1016/j.mrgentox.2009.04.004
  • Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17(1), 195–213. https://doi.org/10.1007/s10311-018-0786-8
  • da Silva, A. F. V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., & de Oliveira, J. V. (2023). Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. Journal of Water Process Engineering, 53, 103743. https://doi.org/10.1016/j.jwpe.2023.103743
  • Daverey, A., Pandey, D., Verma, P., Verma, S., Shah, V., Dutta, K., & Arunachalam, K. (2019). Recent advances in energy efficient biological treatment of municipal wastewater. Bioresource Technology Reports, 7, 100252. https://doi.org/10.1016/j.biteb.2019.100252
  • Deniz, F., & Yildiz, H. (2019a). Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution. International Journal of Phytoremediation, 21(3), 259–267. https://doi.org/10.1080/15226514.2018.1524451
  • Deniz, F., & Yildiz, H. (2019b). Taguchi DoE methodology for modeling of synthetic dye biosorption from aqueous effluents: parametric and phenomenological studies. International Journal of Phytoremediation, 21(11), 1065–1071. https://doi.org/10.1080/15226514.2019.1594687
  • Dinçer, A. R. (2020). Increasing BOD5/COD ratio of non-biodegradable compound (reactive black 5) with ozone and catalase enzyme combination. SN Applied Sciences, 2(4), 736. https://doi.org/10.1007/s42452-020-2557-y
  • Dolas, H. (2023). Activated carbon synthesis and methylene blue adsorption from pepper stem using microwave assisted impregnation method: Isotherm and kinetics. Journal of King Saud University - Science, 35(3), 102559. https://doi.org/10.1016/j.jksus.2023.102559
  • dos Reis, G. S., Bergna, D., Grimm, A., Lima, E. C., Hu, T., Naushad, M., & Lassi, U. (2023). Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 669, 131493. https://doi.org/10.1016/j.colsurfa.2023.131493
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2(14), 4497–4531. https://doi.org/10.1039/D1MA00354B
  • El Messaoudi, N., Ciğeroğlu, Z., Şenol, Z. M., Bouich, A., Kazan-Kaya, E. S., Noureen, L., & Américo-Pinheiro, J. H. P. (2024). Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption (ss. 305–345). https://doi.org/10.1016/bs.apmp.2023.06.016
  • Elfving, J., Kauppinen, J., Jegoroff, M., Ruuskanen, V., Järvinen, L., & Sainio, T. (2021). Experimental comparison of regeneration methods for CO2 concentration from air using amine-based adsorbent. Chemical Engineering Journal, 404, 126337. https://doi.org/10.1016/j.cej.2020.126337
  • Feuzer-Matos, A. J., Testolin, R. C., Pimentel-Almeida, W., Radetski-Silva, R., Deomar-Simões, M. J., Poyer-Radetski, L., Ariente-Neto, R., Batista-Barwinski, M. J., Somensi, C. A., & Radetski, C. M. (2022). Treatment of Wastewater Containing New and Non-biodegradable Textile Dyes: Efficacy of Combined Advanced Oxidation and Adsorption Processes. Water, Air, & Soil Pollution, 233(7), 273. https://doi.org/10.1007/s11270-022-05751-1
  • Fiyadh, S. S., Alardhi, S. M., Al Omar, M., Aljumaily, M. M., Al Saadi, M. A., Fayaed, S. S., Ahmed, S. N., Salman, A. D., Abdalsalm, A. H., Jabbar, N. M., & El-Shafi, A. (2023). A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique. Heliyon, 9(4), e15455. https://doi.org/10.1016/j.heliyon.2023.e15455
  • Genli, N., Kutluay, S., Baytar, O., & Şahin, Ö. (2022). Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. International Journal of Phytoremediation, 24(1), 88–100. https://doi.org/10.1080/15226514.2021.1926911
  • Ghernaout, D., Elboughdiri, N., & Ghareba, S. (2020). Fenton Technology for Wastewater Treatment: Dares and Trends. OALib, 07(01), 1–26. https://doi.org/10.4236/oalib.1106045
  • Gupta, S. A., Vishesh, Y., Sarvshrestha, N., Bhardwaj, A. S., Kumar, P. A., Topare, N. S., Raut-Jadhav, S., Bokil, S. A., & Khan, A. (2021). Adsorption isotherm studies of Methylene blue using activated carbon of waste fruit peel as an adsorbent. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.12.044
  • Han, Y., Yang, L., Chen, X., Cai, Y., Zhang, X., Qian, M., Chen, X., Zhao, H., Sheng, M., Cao, G., & Shen, G. (2020). Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation. Science of The Total Environment, 709, 136094. https://doi.org/10.1016/j.scitotenv.2019.136094
  • Homaeigohar, S. (2020). The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials, 10(2), 295. https://doi.org/10.3390/nano10020295
  • Hube, S., Eskafi, M., Hrafnkelsdóttir, K. F., Bjarnadóttir, B., Bjarnadóttir, M. Á., Axelsdóttir, S., & Wu, B. (2020). Direct membrane filtration for wastewater treatment and resource recovery: A review. Science of The Total Environment, 710, 136375. https://doi.org/10.1016/j.scitotenv.2019.136375
  • Imessaoudene, A., Cheikh, S., Hadadi, A., Hamri, N., Bollinger, J.-C., Amrane, A., Tahraoui, H., Manseri, A., & Mouni, L. (2023). Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations, 10(1), 57. https://doi.org/10.3390/separations10010057
  • İzgi, M. S., Saka, C., Baytar, O., Saraçoğlu, G., & Şahin, Ö. (2019). Preparation and Characterization of Activated Carbon from Microwave and Conventional Heated Almond Shells Using Phosphoric Acid Activation. Analytical Letters, 52(5), 772–789. https://doi.org/10.1080/00032719.2018.1495223
  • Karcher, S., Kornmüller, A., & Jekel, M. (2002). Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Research, 36(19), 4717–4724. https://doi.org/10.1016/S0043-1354(02)00195-1
  • Kasbaji, M., Mennani, M., Grimi, N., Oubenali, M., Mbarki, M., EL Zakhem, H., & Moubarik, A. (2023). Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. International Journal of Biological Macromolecules, 239, 124288. https://doi.org/10.1016/j.ijbiomac.2023.124288
  • Kausar, A., Zohra, S. T., Ijaz, S., Iqbal, M., Iqbal, J., Bibi, I., Nouren, S., El Messaoudi, N., & Nazir, A. (2023). Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. International Journal of Biological Macromolecules, 224, 1337–1355. https://doi.org/10.1016/j.ijbiomac.2022.10.220
  • Key, S., Ryan, P. G., Gabbott, S. E., Allen, J., & Abbott, A. P. (2024). Influence of colourants on environmental degradation of plastic litter. Environmental Pollution, 347, 123701. https://doi.org/10.1016/j.envpol.2024.123701 khalidi-idrissi, A., Madinzi, A., Anouzla, A., Pala, A., Mouhir, L., Kadmi, Y., & Souabi, S. (2023). Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. International Journal of Environmental Science and Technology, 20(10), 11719–11740. https://doi.org/10.1007/s13762-023-04867-z
  • Kozyatnyk, I., Yacout, D. M. M., Van Caneghem, J., & Jansson, S. (2020). Comparative environmental assessment of end-of-life carbonaceous water treatment adsorbents. Bioresource Technology, 302, 122866. https://doi.org/10.1016/j.biortech.2020.122866
  • Kumari, P., & Kumar, A. (2023). ADVANCED OXIDATION PROCESS: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces, 11, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122
  • Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504. https://doi.org/10.1016/j.cherd.2016.02.006
  • Largo, F., Haounati, R., Ouachtak, H., Hafid, N., Jada, A., & Addi, A. A. (2023). Design of organically modified sepiolite and its use as adsorbent for hazardous Malachite Green dye removal from water. Water, Air, & Soil Pollution, 234(3), 183. https://doi.org/10.1007/s11270-023-06185-z
  • Lim, S., Shi, J. L., von Gunten, U., & McCurry, D. L. (2022). Ozonation of organic compounds in water and wastewater: A critical review. Water Research, 213, 118053. https://doi.org/10.1016/j.watres.2022.118053
  • Masula, K., Bhongiri, Y., Raghav Rao, G., Vijay Kumar, P., Pola, S., & Basude, M. (2022). Evolution of photocatalytic activity of CeO2–Bi2O3 composite material for wastewater degradation under visible-light irradiation. Optical Materials, 126, 112201. https://doi.org/10.1016/j.optmat.2022.112201
  • Mogharbel, R. T., Alkhamis, K., Felaly, R., El-Desouky, M. G., El-Bindary, A. A., El-Metwaly, N. M., & El-Bindary, M. A. (2023). Superior adsorption and removal of industrial dye from aqueous solution via magnetic silver metal-organic framework nanocomposite. Environmental Technology, 1–17. https://doi.org/10.1080/09593330.2023.2178331
  • Operti, M. C., Bernhardt, A., Grimm, S., Engel, A., Figdor, C. G., & Tagit, O. (2021). PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. International Journal of Pharmaceutics, 605, 120807. https://doi.org/10.1016/j.ijpharm.2021.120807
  • Othmani, A., Kesraoui, A., Boada, R., Seffen, M., & Valiente, M. (2019). Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current. Water, 11(7), 1326. https://doi.org/10.3390/w11071326
  • Qazi, R. A., Ullah, N., Bibi, N., Khattak, R., Jamila, N., Begum, B., Aman, N., Rahayu, F., & Karami, A. M. (2023). Amine-Functionalized MWCNTs for the Removal of Mordant Black 11 Dye. Water, Air, & Soil Pollution, 234(10), 644. https://doi.org/10.1007/s11270-023-06662-5
  • Quansah, J. O., Hlaing, T., Lyonga, F. N., Kyi, P. P., Hong, S.-H., Lee, C.-G., & Park, S.-J. (2020). Nascent Rice Husk as an Adsorbent for Removing Cationic Dyes from Textile Wastewater. Applied Sciences, 10(10), 3437. https://doi.org/10.3390/app10103437
  • Rajoria, S., Vashishtha, M., & Sangal, V. K. (2021). Review on the treatment of electroplating industry wastewater by electrochemical methods. Materials Today: Proceedings, 47, 1472–1479. https://doi.org/10.1016/j.matpr.2021.04.165
  • Rehan, A. I., Rasee, A. I., Awual, M. E., Waliullah, R. M., Hossain, M. S., Kubra, K. T., Salman, M. S., Hasan, M. M., Hasan, M. N., Sheikh, M. C., Marwani, H. M., Khaleque, M. A., Islam, A., & Awual, M. R. (2023). Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 673, 131859. https://doi.org/10.1016/j.colsurfa.2023.131859
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
  • Salman, M. S., Sheikh, M. C., Hasan, M. M., Hasan, M. N., Kubra, K. T., Rehan, A. I., Awual, M. E., Rasee, A. I., Waliullah, R. M., Hossain, M. S., Khaleque, M. A., Alsukaibi, A. K. D., Alshammari, H. M., & Awual, M. R. (2023). Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Applied Surface Science, 622, 157008. https://doi.org/10.1016/j.apsusc.2023.157008
  • Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034
  • Sasmaz, M., Senel, G. U., & Obek, E. (2021). Boron Bioaccumulation by the Dominant Macrophytes Grown in Various Discharge Water Environments. Bulletin of Environmental Contamination and Toxicology, 106(6), 1050–1058. https://doi.org/10.1007/s00128-021-03222-7
  • Shabir, F., Sultan, M., Miyazaki, T., Saha, B. B., Askalany, A., Ali, I., Zhou, Y., Ahmad, R., & Shamshiri, R. R. (2020). Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renewable and Sustainable Energy Reviews, 119, 109630. https://doi.org/10.1016/j.rser.2019.109630
  • Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154–169. https://doi.org/10.1016/j.coelec.2020.05.009
  • Sharifi Pajaie, S. H., Archin, S., & Asadpour, G. (2018). Optimization of Process Parameters by Response Surface Methodology for Methylene Blue Removal Using Cellulose Dusts. Civil Engineering Journal, 4(3), 620. https://doi.org/10.28991/cej-0309121
  • Sharma, J., Sharma, S., & Soni, V. (2021). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. https://doi.org/10.1016/j.rsma.2021.101802
  • Suzuki, M., Suzuki, Y., Uzuka, K., & Kawase, Y. (2020). Biological treatment of non-biodegradable azo-dye enhanced by zero-valent iron (ZVI) pre-treatment. Chemosphere, 259, 127470. https://doi.org/10.1016/j.chemosphere.2020.127470
  • Swanckaert, B., Geltmeyer, J., Rabaey, K., De Buysser, K., Bonin, L., & De Clerck, K. (2022). A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Separation and Purification Technology, 287, 120529. https://doi.org/10.1016/j.seppur.2022.120529
  • Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017, 1–10. https://doi.org/10.1155/2017/8404965
  • United Nations. (2019). World Population Prospects 2019 Highlights.
  • Vasiraja, N., Saravana Sathiya Prabhahar, R., & Joshua, A. (2023). Preparation and Physio–Chemical characterisation of activated carbon derived from prosopis juliflora stem for the removal of methylene blue dye and heavy metal containing textile industry effluent. Journal of Cleaner Production, 397, 136579. https://doi.org/10.1016/j.jclepro.2023.136579
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
  • Yildiz, H., Gülşen, H., Şahin, Ö., Baytar, O., & Kutluay, S. (2023). Novel adsorbent for malachite green from okra stalks waste: synthesis, kinetics and equilibrium studies. International Journal of Phytoremediation, 1–13. https://doi.org/10.1080/15226514.2023.2243621
  • Yildiz, H., & Yuksel, A. Y. (2023). Novel Adsorbent for Methylene Blue from Waste Fish Scales (Cyprinus Carpio): Kinetics and Equilibrium Studies. Environmental Engineering and Management Journal, 22(6), 1073–1080. https://doi.org/10.30638/eemj.2023.088
  • Yildiz, H., & Yüksel, A. Y. (2024). A novel biosorbent material from waste fish scales (Cyprinus carpio) for biosorption of toxic dyes in aquatic environments. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-024-05900-y
  • Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365. https://doi.org/10.1016/j.envpol.2019.05.072
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Waste Management, Reduction, Reuse and Recycling, Wastewater Treatment Processes
Journal Section Environmental Engineering
Authors

Hakan Yıldız 0000-0002-2181-7226

Publication Date December 3, 2024
Submission Date April 19, 2024
Acceptance Date May 11, 2024
Published in Issue Year 2024Volume: 27 Issue: 4

Cite

APA Yıldız, H. (2024). ATIKSUDAN BOYA GİDERİMİNDEKİ GELİŞMELER: ADSORPSİYON TEKNOLOJİSİ VE GELECEĞE YÖNELİK BEKLENTİLER. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1544-1556. https://doi.org/10.17780/ksujes.1470859