Research Article
BibTex RIS Cite

ÖZEL MEKANİK AŞIRI SOĞUTUCULU TRANSKRİTİK CO2 SÜPERMARKET SOĞUTMA ÇEVRİMLERİNİN ENERJİ VE ÇEVRESEL ANALİZİ

Year 2024, Volume: 27 Issue: 4, 1582 - 1601, 03.12.2024
https://doi.org/10.17780/ksujes.1477931

Abstract

Yüksek çevresel etkiye sahip soğutucu akışkanlar resmi otoriteler tarafından yasaklanmaktadır. Emisyonlara büyük katkıda bulunan ticari soğutma sektörü, çevre dostu CO2 sistemlerine geçiş yapmaktadır. Çevresel faydalarına rağmen CO2’nin düşük kritik sıcaklığı ve yüksek çalışma basıncı, sıcak iklimlerde diğer soğutucu akışkanlara kıyasla daha düşük performansa yol açabilir. Bu nedenle transkritik CO2 soğutma çevrimleri için performans iyileştirmeleri yapılmaktadır. Bu makale, özel mekanik aşırı soğutuculu (DMS) çift kademeli (BRC), paralel sıkıştırmalı (PRC) ve ejektör genleşmeli (ERC) transkritik süpermarket soğutma çevrimlerinin yanı sıra DMS’siz çevrimlerin ve kritik nokta altı klasik R404A sistemin enerji ve çevresel analizini sunmaktadır. DMS devreleri için iş akışkanı olarak R134a, R1234yf ve R290 incelenmiştir. Yıllık enerji tüketimi ve toplam eşdeğer ısınma etkisi (TEWI) değerleri, bir uygulama örneği olarak Türkiye'de farklı iklim bölgelerinde yer alan İstanbul, Konya ve Samsun için karşılaştırılmıştır. Uygulama örneği bu çalışmanın özgünlüğünü oluşturmaktadır. R404A klasik sisteme kıyasla DMS'li CO2 çevrimleri kullanılarak yıllık %11'e varan enerji tasarrufu elde edilmiştir. CO2 çevrimleri, R404A klasik sisteme göre %58.4'e kadar daha düşük toplam TEWI değerlerine sahiptir.

References

  • Atmaca, A. U., Erek, A., Ekren, O., & Çoban, M. T. (2018). Thermodynamic performance of the transcritical refrigeration cycle with ejector expansion for R744, R170, and R41. Journal of Thermal Science and Technology, 38, 111–127.
  • Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498–2508. https://doi.org/10.1021/ie4033999
  • Bölük, E., & Kömüşcü, A. Ü. (2018). Köppen-Trewartha iklim sınıflandırmasına göre Türkiye iklimi. Ankara, Türkiye: Directorate General of Meteorology.
  • Caliskan, O., Bilir Sag, N., & Ersoy, H. K. (2024). Thermodynamic, environmental, and exergoeconomic analysis of multi-ejector expansion transcritical CO2 supermarket refrigeration cycles in different climate regions of Türkiye. International Journal of Refrigeration, 165, 466–484. https://doi.org/10.1016/j.ijrefrig.2024.05.006
  • Caliskan, O., & Ersoy, H. K. (2022). Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles. The Journal of Supercritical Fluids, 189, 105698. https://doi.org/10.1016/j.supflu.2022.105698
  • Çalışkan, O., & Ersoy, H. K. (2024). Energy, environmental, and exergoeconomic (3E) analysis of transcritical CO2 booster and parallel compression supermarket refrigeration cycles in climate zones of Türkiye. Konya Journal of Engineering Sciences, 123–137. https://doi.org/10.36306/konjes.1393426
  • Catalán-Gil, J., Llopis, R., Sánchez, D., Nebot-Andrés, L., & Cabello, R. (2019). Energy analysis of dedicated and integrated mechanical subcooled CO2 boosters for supermarket applications. International Journal of Refrigeration, 101, 11–23. https://doi.org/10.1016/j.ijrefrig.2019.01.034
  • Chakroun, W. (2016). Lower-GWP Alternatives in Commercial and Transport Refrigeration: An expanded compilation of propane, CO2, ammonia and HFO case studies. Paris: United Nations Environment Programme.
  • Contiero, L., Pardiñas, A. A., & Hafner, A. (2021, September 16). Multi ejector and pivoting-supported R744 application with AC for supermarkets. Presented at the 9th IIR Conference on Ammonia and CO2 Refrigeration Technologies, Ohrid, North Macedonia. Ohrid, North Macedonia. http://dx.doi.org/10.18462/iir.nh3-co2.2021.0019
  • Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C., & Wang, D. (2024). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China. Journal of Cleaner Production, 434, 140186. https://doi.org/10.1016/j.jclepro.2023.140186 Danfoss. (2023). Coolselector2. Danfoss A/S.
  • de Paula, C. H., Duarte, W. M., Rocha, T. T. M., de Oliveira, R. N., & Maia, A. A. T. (2020). Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. International Journal of Refrigeration, 113, 10–20. https://doi.org/10.1016/j.ijrefrig.2020.01.012
  • de Paula, C. H., Duarte, W. M., Rocha, T. T. M., de Oliveira, R. N., Mendes, R. de P., & Maia, A. A. T. (2020). Thermo-economic and environmental analysis of a small capacity vapor compression refrigeration system using R290, R1234yf, and R600a. International Journal of Refrigeration, 118, 250–260. https://doi.org/10.1016/j.ijrefrig.2020.07.003
  • Devotta, S., & Sicars, S. (2005). Refrigeration. In IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System. Cambridge University Press. Retrieved from https://archive.ipcc.ch/pdf/special-reports/sroc/sroc04.pdf
  • ETKB. (2022). Türkiye elektrik üretimi ve elektrik tüketim noktası emisyon faktörleri bilgi formu (No. ETKB-EVÇED-FRM-042 Rev.00). Ankara, Türkiye: Ministry of Energy and Natural Resources.
  • Haroldsen, J. O. (2023, June 21). Japanese C-Store Operator Lawson Operates 5,028 Stores – Over 34% of Its Chain – With CO2 Refrigeration. Retrieved August 22, 2023, from R744.com website: https://r744.com/japanese-c-store-operator-lawson-operates-5028-stores-over-34-of-its-chain-with-co2-refrigeration/
  • Hayes, C. (2023, February 20). METRO Continues Rollout of Transcritical CO2 in All New Stores. Retrieved March 27, 2024, from R744 website: https://r744.com/atmo-europe-metro-continues-rollout-of-transcritical-co2-in-all-new-stores-and-refurbishments/
  • Hayes, C. (2024, January 15). METRO Rolls Out First Transcritical CO2 Installation in Serbia. Retrieved March 26, 2024, from R744 website: https://r744.com/metro-rolls-out-first-transcritical-co2-installation-in-serbia/ Hayes, C., Haroldsen, J., & Thapa, S. (2023). Natural Refrigerants: State of the Industry/Refrigeration in Europe, North America and Japan, Plus Heat Pumps in Europe. ATMOsphere.
  • Hines, M. (2024, January 11). All ALDI US Stores Will Transition to Natural Refrigerants by 2035. Retrieved March 26, 2024, from R744 website: https://r744.com/all-aldi-us-stores-will-transition-to-natural-refrigerants-by-2035/
  • Isik, M., & Bilir Sag, N. (2023). Energetic, economic, and environmental analysis of CO2 booster refrigeration systems of supermarket application for Türkiye. Sādhanā, 48(4), 275. https://doi.org/10.1007/s12046-023-02337-3
  • Karampour, M., & Sawalha, S. (2018). State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. International Journal of Refrigeration, 86, 239–257. https://doi.org/10.1016/j.ijrefrig.2017.11.006
  • Keenan, J. H., Neumann, E. P., & Lustwerk, F. (1950). An Investigation of Ejector Design by Analysis and Experiment. Journal of Applied Mechanics, 17(3), 299–309. https://doi.org/10.1115/1.4010131 Klein, S. A. (2020). Engineering Equation Solver. F-Chart Software.
  • Klemick, H., Kopits, E., & Wolverton, A. (2015). The Energy Efficiency Paradox: A Case Study of Supermarket Refrigeration System Investment Decisions (No. Working Paper # 15-03). Washington DC, US: U.S. Environmental Protection Agency.
  • Li, D., & Groll, E. A. (2005). Transcritical CO2 refrigeration cycle with ejector-expansion device. International Journal of Refrigeration, 28(5), 766–773. https://doi.org/10.1016/j.ijrefrig.2004.10.008
  • Liu, X., Yu, K., Wan, X., & Li, X. (2021). Performance evaluation of CO2 supermarket refrigeration system with multi-ejector and dedicated mechanical subcooling. Energy Reports, 7, 5214–5227. https://doi.org/10.1016/j.egyr.2021.08.110
  • Mitsopoulos, G., Syngounas, E., Tsimpoukis, D., Bellos, E., Tzivanidis, C., & Anagnostatos, S. (2019). Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant. Energy Conversion and Management: X, 1, 100006. https://doi.org/10.1016/j.ecmx.2019.100006
  • Papazahariou, C. (2010). Natural refrigerants faster to market, commercial refrigeration with low gwp alternatives. Presented at the Joint Meeting of the Regional Ozone Networks for Europe & Central Asia and South Asia, Istanbul. Istanbul: Shecco.
  • Said, S. A. M., Habib, M. A., & Iqbal, M. O. (2003). Database for building energy prediction in Saudi Arabia. Energy Conversion and Management, 44(1), 191–201. https://doi.org/10.1016/S0196-8904(02)00042-0
  • Schulz, M., & Kourkoulas, D. (2014). Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 (No. 517/2014; p. L150/195-230). Retrieved from http://eur-lex.europa.eu/eli/reg/2014/517/oj
  • Sengupta, A., & Dasgupta, M. S. (2023). Energy and advanced exergoeconomic analysis of a novel ejector-based CO2 refrigeration system and its optimization for supermarket application in warm climates. Thermal Science and Engineering Progress, 44, 102056. https://doi.org/10.1016/j.tsep.2023.102056
  • Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., … Watanabe, M. (2021). The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, … B. Zhou, Eds.). Retrieved from https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf
  • The MathWorks Inc. (2022). MATLAB version: 9.13.0.2399474 (R2022b) update 7. The MathWorks Inc. Retrieved from www.mathworks.com
  • Tsamos, K. M., Ge, Y. T., Santosa, Id., Tassou, S. A., Bianchi, G., & Mylona, Z. (2017). Energy analysis of alternative CO 2 refrigeration system configurations for retail food applications in moderate and warm climates. Energy Conversion and Management, 150, 822–829. https://doi.org/10.1016/j.enconman.2017.03.020
  • Tsimpoukis, D., Syngounas, E., Petsanas, D., Mitsopoulos, G., Anagnostatos, S., Bellos, E., … Vrachopoulos, M. G. (2021). Energy and environmental investigation of R744 all-in-one configurations for refrigeration and heating/air conditioning needs of a supermarket. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123234
  • Yapici, R., & Ersoy, H. K. (2005). Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energy Conversion and Management, 46(18–19), 3117–3135. https://doi.org/10.1016/j.enconman.2005.01.010
  • Zhang, M. (2006). Energy Analysis of Various Supermarket Refrigeration Systems. International Refrigeration and Air Conditioning Conference. Purdue.
  • Zottl, A., Lindahl, M., Nordman, R., Rivière, P., & Miara, M. (2011). Evaluation method for comparison of heat pump systems with conventional heating systems, D4.3. Concept for evaluation of CO2-reduction potential. European Commission.

ENERGY AND ENVIRONMENTAL ANALYSIS OF TRANSCRITICAL CO2 SUPERMARKET REFRIGERATION CYCLES WITH DEDICATED MECHANICAL SUBCOOLER

Year 2024, Volume: 27 Issue: 4, 1582 - 1601, 03.12.2024
https://doi.org/10.17780/ksujes.1477931

Abstract

Refrigerants with high environmental impact are being prohibited by legal authorities. The commercial refrigeration sector, a huge contributor to emissions, is transitioning to environmentally friendly CO2 systems. Despite the environmental benefits of CO2, its low critical temperature and high operation pressure can lead to lower performance in warm climates compared to other refrigerants. Therefore, performance improvements are being made for transcritical CO2 refrigeration cycles. This paper presents energy and environmental analysis of transcritical booster (BRC), parallel compression (PRC), and ejector expansion (ERC) supermarket refrigeration cycles with dedicated mechanical subcooler (DMS) as well as transcritical cycles without DMS circuits, and subcritical R404A conventional system. R134a, R1234yf, and R290 were studied as working fluids for DMS circuits. Annual energy consumption and total equivalent warming impact (TEWI) values were compared for İstanbul, Konya, and Samsun in Türkiye, which are in different climate zones, as a case study. The case study constitutes the novelty of this paper. Up to 11% annual energy savings were obtained using CO2 cycles with DMS compared to R404A conventional system. CO2 cycles have up to 58.4% lower total TEWI values than R404A conventional system

References

  • Atmaca, A. U., Erek, A., Ekren, O., & Çoban, M. T. (2018). Thermodynamic performance of the transcritical refrigeration cycle with ejector expansion for R744, R170, and R41. Journal of Thermal Science and Technology, 38, 111–127.
  • Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498–2508. https://doi.org/10.1021/ie4033999
  • Bölük, E., & Kömüşcü, A. Ü. (2018). Köppen-Trewartha iklim sınıflandırmasına göre Türkiye iklimi. Ankara, Türkiye: Directorate General of Meteorology.
  • Caliskan, O., Bilir Sag, N., & Ersoy, H. K. (2024). Thermodynamic, environmental, and exergoeconomic analysis of multi-ejector expansion transcritical CO2 supermarket refrigeration cycles in different climate regions of Türkiye. International Journal of Refrigeration, 165, 466–484. https://doi.org/10.1016/j.ijrefrig.2024.05.006
  • Caliskan, O., & Ersoy, H. K. (2022). Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles. The Journal of Supercritical Fluids, 189, 105698. https://doi.org/10.1016/j.supflu.2022.105698
  • Çalışkan, O., & Ersoy, H. K. (2024). Energy, environmental, and exergoeconomic (3E) analysis of transcritical CO2 booster and parallel compression supermarket refrigeration cycles in climate zones of Türkiye. Konya Journal of Engineering Sciences, 123–137. https://doi.org/10.36306/konjes.1393426
  • Catalán-Gil, J., Llopis, R., Sánchez, D., Nebot-Andrés, L., & Cabello, R. (2019). Energy analysis of dedicated and integrated mechanical subcooled CO2 boosters for supermarket applications. International Journal of Refrigeration, 101, 11–23. https://doi.org/10.1016/j.ijrefrig.2019.01.034
  • Chakroun, W. (2016). Lower-GWP Alternatives in Commercial and Transport Refrigeration: An expanded compilation of propane, CO2, ammonia and HFO case studies. Paris: United Nations Environment Programme.
  • Contiero, L., Pardiñas, A. A., & Hafner, A. (2021, September 16). Multi ejector and pivoting-supported R744 application with AC for supermarkets. Presented at the 9th IIR Conference on Ammonia and CO2 Refrigeration Technologies, Ohrid, North Macedonia. Ohrid, North Macedonia. http://dx.doi.org/10.18462/iir.nh3-co2.2021.0019
  • Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C., & Wang, D. (2024). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China. Journal of Cleaner Production, 434, 140186. https://doi.org/10.1016/j.jclepro.2023.140186 Danfoss. (2023). Coolselector2. Danfoss A/S.
  • de Paula, C. H., Duarte, W. M., Rocha, T. T. M., de Oliveira, R. N., & Maia, A. A. T. (2020). Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. International Journal of Refrigeration, 113, 10–20. https://doi.org/10.1016/j.ijrefrig.2020.01.012
  • de Paula, C. H., Duarte, W. M., Rocha, T. T. M., de Oliveira, R. N., Mendes, R. de P., & Maia, A. A. T. (2020). Thermo-economic and environmental analysis of a small capacity vapor compression refrigeration system using R290, R1234yf, and R600a. International Journal of Refrigeration, 118, 250–260. https://doi.org/10.1016/j.ijrefrig.2020.07.003
  • Devotta, S., & Sicars, S. (2005). Refrigeration. In IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System. Cambridge University Press. Retrieved from https://archive.ipcc.ch/pdf/special-reports/sroc/sroc04.pdf
  • ETKB. (2022). Türkiye elektrik üretimi ve elektrik tüketim noktası emisyon faktörleri bilgi formu (No. ETKB-EVÇED-FRM-042 Rev.00). Ankara, Türkiye: Ministry of Energy and Natural Resources.
  • Haroldsen, J. O. (2023, June 21). Japanese C-Store Operator Lawson Operates 5,028 Stores – Over 34% of Its Chain – With CO2 Refrigeration. Retrieved August 22, 2023, from R744.com website: https://r744.com/japanese-c-store-operator-lawson-operates-5028-stores-over-34-of-its-chain-with-co2-refrigeration/
  • Hayes, C. (2023, February 20). METRO Continues Rollout of Transcritical CO2 in All New Stores. Retrieved March 27, 2024, from R744 website: https://r744.com/atmo-europe-metro-continues-rollout-of-transcritical-co2-in-all-new-stores-and-refurbishments/
  • Hayes, C. (2024, January 15). METRO Rolls Out First Transcritical CO2 Installation in Serbia. Retrieved March 26, 2024, from R744 website: https://r744.com/metro-rolls-out-first-transcritical-co2-installation-in-serbia/ Hayes, C., Haroldsen, J., & Thapa, S. (2023). Natural Refrigerants: State of the Industry/Refrigeration in Europe, North America and Japan, Plus Heat Pumps in Europe. ATMOsphere.
  • Hines, M. (2024, January 11). All ALDI US Stores Will Transition to Natural Refrigerants by 2035. Retrieved March 26, 2024, from R744 website: https://r744.com/all-aldi-us-stores-will-transition-to-natural-refrigerants-by-2035/
  • Isik, M., & Bilir Sag, N. (2023). Energetic, economic, and environmental analysis of CO2 booster refrigeration systems of supermarket application for Türkiye. Sādhanā, 48(4), 275. https://doi.org/10.1007/s12046-023-02337-3
  • Karampour, M., & Sawalha, S. (2018). State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. International Journal of Refrigeration, 86, 239–257. https://doi.org/10.1016/j.ijrefrig.2017.11.006
  • Keenan, J. H., Neumann, E. P., & Lustwerk, F. (1950). An Investigation of Ejector Design by Analysis and Experiment. Journal of Applied Mechanics, 17(3), 299–309. https://doi.org/10.1115/1.4010131 Klein, S. A. (2020). Engineering Equation Solver. F-Chart Software.
  • Klemick, H., Kopits, E., & Wolverton, A. (2015). The Energy Efficiency Paradox: A Case Study of Supermarket Refrigeration System Investment Decisions (No. Working Paper # 15-03). Washington DC, US: U.S. Environmental Protection Agency.
  • Li, D., & Groll, E. A. (2005). Transcritical CO2 refrigeration cycle with ejector-expansion device. International Journal of Refrigeration, 28(5), 766–773. https://doi.org/10.1016/j.ijrefrig.2004.10.008
  • Liu, X., Yu, K., Wan, X., & Li, X. (2021). Performance evaluation of CO2 supermarket refrigeration system with multi-ejector and dedicated mechanical subcooling. Energy Reports, 7, 5214–5227. https://doi.org/10.1016/j.egyr.2021.08.110
  • Mitsopoulos, G., Syngounas, E., Tsimpoukis, D., Bellos, E., Tzivanidis, C., & Anagnostatos, S. (2019). Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant. Energy Conversion and Management: X, 1, 100006. https://doi.org/10.1016/j.ecmx.2019.100006
  • Papazahariou, C. (2010). Natural refrigerants faster to market, commercial refrigeration with low gwp alternatives. Presented at the Joint Meeting of the Regional Ozone Networks for Europe & Central Asia and South Asia, Istanbul. Istanbul: Shecco.
  • Said, S. A. M., Habib, M. A., & Iqbal, M. O. (2003). Database for building energy prediction in Saudi Arabia. Energy Conversion and Management, 44(1), 191–201. https://doi.org/10.1016/S0196-8904(02)00042-0
  • Schulz, M., & Kourkoulas, D. (2014). Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 (No. 517/2014; p. L150/195-230). Retrieved from http://eur-lex.europa.eu/eli/reg/2014/517/oj
  • Sengupta, A., & Dasgupta, M. S. (2023). Energy and advanced exergoeconomic analysis of a novel ejector-based CO2 refrigeration system and its optimization for supermarket application in warm climates. Thermal Science and Engineering Progress, 44, 102056. https://doi.org/10.1016/j.tsep.2023.102056
  • Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., … Watanabe, M. (2021). The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, … B. Zhou, Eds.). Retrieved from https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf
  • The MathWorks Inc. (2022). MATLAB version: 9.13.0.2399474 (R2022b) update 7. The MathWorks Inc. Retrieved from www.mathworks.com
  • Tsamos, K. M., Ge, Y. T., Santosa, Id., Tassou, S. A., Bianchi, G., & Mylona, Z. (2017). Energy analysis of alternative CO 2 refrigeration system configurations for retail food applications in moderate and warm climates. Energy Conversion and Management, 150, 822–829. https://doi.org/10.1016/j.enconman.2017.03.020
  • Tsimpoukis, D., Syngounas, E., Petsanas, D., Mitsopoulos, G., Anagnostatos, S., Bellos, E., … Vrachopoulos, M. G. (2021). Energy and environmental investigation of R744 all-in-one configurations for refrigeration and heating/air conditioning needs of a supermarket. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123234
  • Yapici, R., & Ersoy, H. K. (2005). Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energy Conversion and Management, 46(18–19), 3117–3135. https://doi.org/10.1016/j.enconman.2005.01.010
  • Zhang, M. (2006). Energy Analysis of Various Supermarket Refrigeration Systems. International Refrigeration and Air Conditioning Conference. Purdue.
  • Zottl, A., Lindahl, M., Nordman, R., Rivière, P., & Miara, M. (2011). Evaluation method for comparison of heat pump systems with conventional heating systems, D4.3. Concept for evaluation of CO2-reduction potential. European Commission.
There are 36 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Mechanical Engineering
Authors

Oğuz Çalışkan 0000-0002-3364-1360

H. Kürşad Ersoy 0000-0001-8588-296X

Publication Date December 3, 2024
Submission Date May 3, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024Volume: 27 Issue: 4

Cite

APA Çalışkan, O., & Ersoy, H. K. (2024). ENERGY AND ENVIRONMENTAL ANALYSIS OF TRANSCRITICAL CO2 SUPERMARKET REFRIGERATION CYCLES WITH DEDICATED MECHANICAL SUBCOOLER. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1582-1601. https://doi.org/10.17780/ksujes.1477931