Bu çalışmada, Hardox 450 çeliği, Aramid /epoksi laminat kompozit ve Alüminyum bal peteği malzemelerinden oluşan tekli ve çoklu hibrit zırh yapılarının balistik performansı araştırılmıştır. Test levhalarına 833 ± 15 m/s namlu çıkış hızına sahip 7.62 tam metal kaplama mermi ile deneysel balistik testler gerçekleştirilmiştir. Balistik test uygulanacak levhalar 250×250 mm boyutlarına sahip olup kalınlıkları ise malzeme konfigürasyonuna göre farklılık göstermiştir. Test levhaları dört kenarından sabitlenmiştir. Balistik darbe levhanın vurma yüzeyine dik gelecek şekilde atış yapılarak gerçekleştirilmiştir. Deneysel çalışmalarda, vurma yüzeyine göre sırasıyla 4 mm Hardox 450, 24 kat Aramid /epoksi laminat kompozit ve 10 mm Alüminyum bal peteğinden oluşan hibrit zırh yapısı darbe enerjisine balistik direnç gösterememiştir. Öte yandan tekli yapı olarak kullanılan 6 mm Hardox 450 zırh plakası darbe enerjisine balistik direnç sergilemiştir. Sonlu elemanlar analizi LS-Dyna programında açık zaman entegrasyonu yöntemi ile yapılmış; arka yüzey çöküntü miktarı ve sönümlenen enerji miktarları karşılaştırmalı olarak verilmiştir.
Abdullah, S., Abdullah, M., & Jamil, W. M. (2020). Ballistic performance of the steel-aluminium metal laminate panel for armoured vehicle. Journal of Mechanical Engineering Sciences, 14(1), 6452-6460. doi:https://doi.org/10.15282/jmes.14.1.2020.20.0505
Arslan, K., Gunes, R., Apalak, M. K., & Reddy, J. N. (2017). Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates. Journal of Composite Materials, 51(29), 4009-4028. doi: https://doi.org/10.1177/0021998317695423
Bekci, M. L., Canpolat, B. H., Usta, E., Güler, M. S., & Cora, Ö. N. (2021). Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations. Engineering Science Technology, an International Journal, 24(4), 990-995. doi:https://doi.org/10.1016/j.jestch.2021.01.001
Børvik, T., Dey, S., & Clausen, A. (2009). Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36(7), 948-964. doi:https://doi.org/10.1016/j.ijimpeng.2008.12.003
Gunes, R., Arslan, K., Apalak, M. K., & Reddy, J. N. (2019). Ballistic performance of honeycomb sandwich structures reinforced by functionally graded face plates. Journal of Sandwich Structures & Materials, 21(1), 211-229. doi: https://doi.org/10.1177/109963621668946
Hazell, P. J. (2022). Armour: materials, theory, and design: CRC press.
Hub, J., & Kneys, P. (2013). 3D Simulation Analysis of Aircraft of Aircreft Protection Material Impacting by 7.62 mm Ammunition. University Review, 7(3).
Hub, J., & Komenda, J. (2009). Ballistic's Resistance of Steel Plate Hardox upon Impact of Non Penetrating Projectiles. Advances in Military Technology, 4(2), 79-91.
Kartikeya, K., Chouhan, H., Ram, K., Prasad, S., & Bhatnagar, N. (2022). Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles. International Journal of Impact Engineering, 164, 104211. doi:https://doi.org/10.1016/j.ijimpeng.2022.104211
Khaire, N., Tiwari, G., Patel, V., & Iqbal, M. A. (2023). Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact. Defence Technology, 28, 56-73. doi: https://doi.org/10.1016/j.dt.2022.12.018
Kraus, A., Kraus, E., & Shabalin, I. (2019). Modelling of the processes of impact of a projectile with elements of individual defence. Paper presented at the EPJ Web of Conferences.
Lenihan, D., Ronan, W., O'Donoghue, P. E., & Leen, S. B. (2019). A review of the integrity of metallic vehicle armour to projectile attack. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design Applications, 233(1), 73-94. doi:https://doi.org/10.1177/1464420718759704
Mohotti, D., Ngo, T., & Mendis, P. (2011). Numerical simulation of impact and penetration of ogvial shaped projectiles through steel plate structures.
Palta, E., Gutowski, M., & Fang, H. (2018). A numerical study of steel and hybrid armor plates under ballistic impacts. International Journal of Solids Structures, 136, 279-294. doi:https://doi.org/10.1016/j.ijsolstr.2017.12.021
Peng, L., Tan, M., Zhang, X., Han, G., Xiong, W., Al Teneiji, M., & Guan, Z. (2022). Investigations of the ballistic response of hybrid composite laminated structures. Composite Structures, 282, 115019. doi:https://doi.org/10.1016/j.compstruct.2021.115019
Popławski, A., Kędzierski, P., & Morka, A. (2020). Identification of Armox 500T steel failure properties in the modeling of perforation problems. Materials Design, 190, 108536. doi:https://doi.org/10.1016/j.matdes.2020.108536
Rathod, S., Khaire, N., & Tiwari, G. (2022). A comparative study on the ballistic performance of aramid and aluminum honeycomb sandwich strcutures. Composite Structures, 299, 116048. doi: https://doi.org/10.1016/j.compstruct.2022.116048
Senthil, K., & Iqbal, M. A. (2021). Prediction of superior target layer configuration of armour steel, mild steel and aluminium 7075-T651 alloy against 7.62 AP projectile. Paper presented at the Structures. https://doi.org/10.1016/j.istruc.2020.06.010
In this research, the ballistic performance of single and multiple hybrid armour systems made of Hardox 450 steel, Aramid/epoxy laminate composite, and aluminium honeycomb materials was studied. Ballistic testing was conducted on test plates using 7.62 full metal jacket bullets at a muzzle velocity of 833 ± 15 m/s. The sheets for ballistic testing are 250×250 mm and vary in thickness based on material configuration. Test plates have been fixed on four sides. The ballistic impact was achieved by firing perpendicular to the plate's striking surface. In experimental experiments, the hybrid armour design consisting of 4 mm Hardox 450, 24 layers of Aramid/epoxy laminate composite, and 10 mm Aluminium honeycomb, depending on the impacting surface, could not demonstrate ballistic resistance to impact energy. On the other hand, the 6 mm Hardox 450 armour plate used in a single structure showed ballistic resistance to impact energy. Finite element analysis was carried out using the open-time integration method in LS-Dyna software; the amount of back face signature and absorbed energy values were compared.
Abdullah, S., Abdullah, M., & Jamil, W. M. (2020). Ballistic performance of the steel-aluminium metal laminate panel for armoured vehicle. Journal of Mechanical Engineering Sciences, 14(1), 6452-6460. doi:https://doi.org/10.15282/jmes.14.1.2020.20.0505
Arslan, K., Gunes, R., Apalak, M. K., & Reddy, J. N. (2017). Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates. Journal of Composite Materials, 51(29), 4009-4028. doi: https://doi.org/10.1177/0021998317695423
Bekci, M. L., Canpolat, B. H., Usta, E., Güler, M. S., & Cora, Ö. N. (2021). Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations. Engineering Science Technology, an International Journal, 24(4), 990-995. doi:https://doi.org/10.1016/j.jestch.2021.01.001
Børvik, T., Dey, S., & Clausen, A. (2009). Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36(7), 948-964. doi:https://doi.org/10.1016/j.ijimpeng.2008.12.003
Gunes, R., Arslan, K., Apalak, M. K., & Reddy, J. N. (2019). Ballistic performance of honeycomb sandwich structures reinforced by functionally graded face plates. Journal of Sandwich Structures & Materials, 21(1), 211-229. doi: https://doi.org/10.1177/109963621668946
Hazell, P. J. (2022). Armour: materials, theory, and design: CRC press.
Hub, J., & Kneys, P. (2013). 3D Simulation Analysis of Aircraft of Aircreft Protection Material Impacting by 7.62 mm Ammunition. University Review, 7(3).
Hub, J., & Komenda, J. (2009). Ballistic's Resistance of Steel Plate Hardox upon Impact of Non Penetrating Projectiles. Advances in Military Technology, 4(2), 79-91.
Kartikeya, K., Chouhan, H., Ram, K., Prasad, S., & Bhatnagar, N. (2022). Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles. International Journal of Impact Engineering, 164, 104211. doi:https://doi.org/10.1016/j.ijimpeng.2022.104211
Khaire, N., Tiwari, G., Patel, V., & Iqbal, M. A. (2023). Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact. Defence Technology, 28, 56-73. doi: https://doi.org/10.1016/j.dt.2022.12.018
Kraus, A., Kraus, E., & Shabalin, I. (2019). Modelling of the processes of impact of a projectile with elements of individual defence. Paper presented at the EPJ Web of Conferences.
Lenihan, D., Ronan, W., O'Donoghue, P. E., & Leen, S. B. (2019). A review of the integrity of metallic vehicle armour to projectile attack. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design Applications, 233(1), 73-94. doi:https://doi.org/10.1177/1464420718759704
Mohotti, D., Ngo, T., & Mendis, P. (2011). Numerical simulation of impact and penetration of ogvial shaped projectiles through steel plate structures.
Palta, E., Gutowski, M., & Fang, H. (2018). A numerical study of steel and hybrid armor plates under ballistic impacts. International Journal of Solids Structures, 136, 279-294. doi:https://doi.org/10.1016/j.ijsolstr.2017.12.021
Peng, L., Tan, M., Zhang, X., Han, G., Xiong, W., Al Teneiji, M., & Guan, Z. (2022). Investigations of the ballistic response of hybrid composite laminated structures. Composite Structures, 282, 115019. doi:https://doi.org/10.1016/j.compstruct.2021.115019
Popławski, A., Kędzierski, P., & Morka, A. (2020). Identification of Armox 500T steel failure properties in the modeling of perforation problems. Materials Design, 190, 108536. doi:https://doi.org/10.1016/j.matdes.2020.108536
Rathod, S., Khaire, N., & Tiwari, G. (2022). A comparative study on the ballistic performance of aramid and aluminum honeycomb sandwich strcutures. Composite Structures, 299, 116048. doi: https://doi.org/10.1016/j.compstruct.2022.116048
Senthil, K., & Iqbal, M. A. (2021). Prediction of superior target layer configuration of armour steel, mild steel and aluminium 7075-T651 alloy against 7.62 AP projectile. Paper presented at the Structures. https://doi.org/10.1016/j.istruc.2020.06.010
Özer, M., Ferikel, K., Yılmazçoban, İ. K., Demircioğlu, T. K., et al. (2024). HARDOX 450, ALUMİNYUM BALPETEĞİ VE ARAMİD/EPOKSİ TABAKALI HİBRİT ZIRH PLAKALARININ BALİSTİK DAVRANIŞININ İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1621-1632. https://doi.org/10.17780/ksujes.1489410