Research Article
BibTex RIS Cite

HAZIR ISI YALITIM SIVALARININ FİZİKSEL, MEKANİK, ISI ÖZELLİKLERİNİN BELİRLENMESİ VE UYGUNLUK DEĞERLENDİRİLMESİ

Year 2025, Volume: 28 Issue: 1, 19 - 29, 03.03.2025

Abstract

Yapılarda ısı yalıtımı, enerji tüketiminin azaltılması ve çevresel sürdürülebilirliğin sağlanması açısından temel bir öneme sahiptir. Isı transferini minimize ederek enerji verimliliğini artıran bu uygulama, hem fosil yakıt tüketimini sınırlamakta hem de sera gazı emisyonlarını azaltmaktadır. Bunun yanı sıra, iç mekânlarda termal konfor koşullarını iyileştirerek yaşam kalitesini artırmakta ve uzun vadeli ekonomik tasarruf sağlamaktadır. Bu çalışmada, ülkemizde üretilen ısı yalıtım harçlarının, ısı iletkenlik katsayısı ve basınç dayanımı başta olmak üzere bazı özelliklerinin kriterlere uygunluğu değerlendirilmiştir. Harç numuneleri farklı üreticilere ait 5 farklı sıva ile üretilmiştir. Numunelerin taze ve sertleşmiş haldeki deneyleri yapılmış ve değerleri elde edilmiştir. Basınç dayanımı değerleri incelendiğinde en yüksek basınç dayanımı değeri E firmasının yalıtım sıvası numunelerine aittir. En düşük basınç dayanımı değeri ise C firmasının yalıtım sıvası numunelerine aittir. T sınıfı sıvaların sahip olması gereken ısı dayanımı değerleri dikkate alındığında, D, A ve F yalıtım sıvalarının CS I kriterini, E ve B yalıtım sıvalarının ise CS II kriterini sağladığı tespit edilmiştir. Isıl iletkenlik katsayısı değerleri incelendiğinde en yüksek değer B firmasının yalıtım sıvası numunelerine aittir. En düşük ısı yalıtım değeri ise C firmasının yalıtım sıvası numunelerine aittir. T sınıfı sıvaların sahip olması gereken ısıl iletkenlik katsayısı değerleri dikkate alındığında, A, C ve D yalıtım sıvalarının bu kriteri sağladığı tespit edilmiştir. Sonuç olarak, yalıtım sıvalarının önemli bir kısmının firmanın beyan ettiği değerleri karşılamadığı görülmüştür.

References

  • Abu-Jdayil, B., Mourad, A. H., Hittini, W., Hassan, M., & Hameedi, S. (2019). Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials, 214, 709-735. https://doi.org/10.1016/j.conbuildmat.2019.04.102
  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366.
  • Altuncı, Y. T., & Ocal, C. (2021). Investigation of the Usability of Cotton Bagasse as Aggregate in Plaster Mortar. Journal of Süleyman Demirel University Institute of Science and Technology, 25(3), 558-563. https://doi.org/10.22312/sdufbed.1000007
  • Baloević, G., Radnić, J., Grgić, N., & Matešan, D. (2016). The application of a reinforced plaster mortar for seismic strengthening of masonry structures. Composites Part B: Engineering, 93, 190-202. https://doi.org/10.1016/j.compositesb.2016.03.007
  • Barbero S., Marco Dutto M., Ferrua C., & Pereno A. (2014). Analysis on existent thermal insulating plasters towards innovative applications: Evaluation methodology for a real cost-performance comparison, Energy and Buildings, 77, 40–47. https://doi.org/10.1016/j.enbuild.2014.03.037
  • Bektaş, V., Çerçevik, A. E., & Kandemir, S. Y. (2017). The Importance of Thermal Insulation in Buildings and the Effect of Thermal Insulation Material Thickness on Insulation. Bilecik Şeyh Edebali University Journal of Science, 4(1), 36-42. https://doi.org/10.18185/bseufbd.32048
  • Çolakoğlu, A. (2004). Investigation of the Feasibility of Thermal Insulating External Plaster in Buildings, Master's Thesis, Süleyman Demirel University, Isparta.
  • Çomaklı, K., & Yüksel, B. (2004). Environmental impact of thermal insulation thickness in buildings. Applied Thermal Engineering, 24(5-6), 933-940. https://doi.org/10.1016/j.applthermaleng.2003.10.020
  • Davraz, M., Gündüz, L., & Başpınar, E. (2011). Lightweight aggregated foam plaster for thermal insulation in buildings. Journal of Engineering Sciences and Design, 1(3), 150-155. https://doi.org/10.16990/jesd.32048
  • Davraz, M., & Kılınçarslan, Ş., 2014. The Effect of Perlite Aggregate Plasters on Energy Saving in Buildings, II. International Davraz Symposium, 29-31 May 2014, Isparta.
  • Davraz, M., Koru, M., & Akdağ, A. E. (2015). The effect of physical properties on thermal conductivity of lightweight aggregate. Procedia Earth and Planetary Science, 15, 85-92. https://doi.org/10.1016/j.proeps.2015.08.022
  • Davraz, M., Koru, M., Akdağ, A. E., Kılınçarslan, Ş., Delikanlı, Y. E., & Çabuk, M. (2020). Investigating the use of raw perlite to produce monolithic thermal insulation material. Construction and Building Materials, 263, 120674. https://doi.org/10.1016/j.conbuildmat.2020.120674
  • Dilmaç, Ş., & Kesen, N., 2003. A Comparison of New Turkish Thermal Insulation Standard (TS-825). ISO 9164, EN 832 and German Regulation, Energy and Buildings, 35: 161- 174.
  • Dylewski R., & Adamczyk J. (2014). The comparison of thermal insulation types of plaster with cement plaster, Journal of Cleaner Production, 83, 256-262.
  • Dylewski, R., & Adamczyk, J. (2011). Economic and environmental benefits of thermal insulation of building external walls. Building and Environment, 46(12), 2615-2623.
  • Faria, P., Santos, T., & Aubert, J. E. (2016). Experimental characterization of an earth eco-efficient plastering mortar. Journal of Materials in Civil Engineering, 28(1), 04015085. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001363 İzoder, 2002. Turkish Construction Sector and Insulation Market Evaluation Report. Istanbul.
  • Manohar, K. (2012). Experimental investigation of building thermal insulation from agricultural by-products. British Journal of Applied Science & Technology, 2(3), 227-239.
  • Matoušková, E., Pavelka, K., & Ibrahim, S. (2021). Creating a Material Spectral Library for Plaster and Mortar Material Determination. Materials, 14(22), 7030. https://doi.org/10.3390/ma14227030
  • Molnar, L. M., & Manea, D. L. (2016). New types of plastering mortars based on marble powder slime. Procedia technology, 22, 251-258. https://doi.org/10.1016/j.protcy.2016.01.076
  • Nascimento, A. S., dos Santos, C. P., de Melo, F. M. C., Oliveira, V. G. A., Oliveira, R. M. P. B., Macedo, Z. S., & de Oliveira, H. A. (2020). Production of plaster mortar with incorporation of granite cutting wastes. Journal of Cleaner Production, 265, 121808. https://doi.org/10.1016/j.jclepro.2020.121808
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and buildings, 37(1), 77-86.
  • Papadopoulos, A. M., & Giama, E. (2007). Environmental performance evaluation of thermal insulation materials and its impact on the building. Building and environment, 42(5), 2178-2187.
  • Pásztory, Z. (2021). An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering, 44, 102604. https://doi.org/10.1016/j.jobe.2021.102604
  • Santos, T., Faria, P., & Silva, V. (2019). Can an earth plaster be efficient when applied on different masonries?. Journal of Building Engineering, 23, 314-323. https://doi.org/10.1016/j.jobe.2019.02.011
  • TS EN 1015-10, 2001. Determination of Dry Unit Volume Mass of Hardened Mortar with Voids, Ankara.
  • TS EN 1015-11, 2000. Determination of Compressive and Flexural Strength of Hardened Mortar, Ankara.
  • TS EN 1015-18, 2004. Determination of Water Absorption Coefficient of Hardened Mortar During Capillary Effects, Ankara.
  • TS EN 1015-3, 2000. Determination of Fresh Mortar Consistency. Necatibey Caddesi No:112 Ministries, Ankara.
  • TS EN 1015-6, 2000. Determination of Void Unit Volume Mass of Fresh Mortar, Ankara.
  • TS EN 1015-7, 2000. Determination of Air Content of Fresh Mortar, Necatibey Caddesi No:112 Ministries, Ankara.
  • Tychanicz-Kwiecień, M., Wilk, J., & Gil, P. (2019). Review of high-temperature thermal insulation materials. Journal of Thermophysics and heat transfer, 33(1), 271-284. https://doi.org/10.2514/1.T5420
  • Villasmil, W., Fischer, L. J., & Worlitschek, J. (2019). A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 103, 71-84. https://doi.org/10.1016/j.rser.2018.12.040
  • Xu, Z., Zhu, Z., Zhao, Y., Guo, Z., Chen, G., Liu, C., Chen, X. (2022). Production of sustainable plastering mortar containing waste clay brick aggregates. Case Studies in Construction Materials, 16, e01120. https://doi.org/10.1016/j.cscm.2022.e01120
  • Yetkin, M., Calayır, Y., & Alyamaç, K. E. (2024). The effect of mortar and bond type on mechanical parameters of masonry walls. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(1), 621-634. https://doi.org/10.17341/gazimmfd.1080258
  • Yi, W., Xiling, Z., Jinglin, Y., Wenxuan, W., & Tian, T. (2023). A comprehensive performance evaluation of the cement-based expanded perlite plastering mortar. Science of The Total Environment, 858, 159705. https://doi.org/10.1016/j.scitotenv.2022.159705
  • Zach J., Hela R., Sedlmajer M., Hroudova J., (2013). Development of Thermal Insulation Plasters for Insulating and Sanitation of Building Constructions, IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013, https://doi.org/10.7763/IJET.2013.V5.582
  • Zach, J., Hroudová, J., Brožovský, J., Krejza, Z., & Gailius, A. (2013). Development of thermal insulating materials on natural base for thermal insulation systems. Procedia Engineering, 57, 1288-1294. https://doi.org/10.1016/j.proeng.2013.04.162

DETERMINATION OF PHYSICAL, MECHANICAL, THERMAL PROPERTIES OF READY THERMAL INSULATION PLASTERS

Year 2025, Volume: 28 Issue: 1, 19 - 29, 03.03.2025

Abstract

Thermal insulation is a set of all kinds of measures taken in buildings to keep the internal temperatures of closed spaces at the desired level, to save energy in heating-cooling processes against external climatic conditions, to solve environmental problems, and to reduce air pollution. Thermal insulation; at the same time, prolongs the life of the structure by protecting it from external influences and reduces operating costs since the building physics conditions are met. This study, aims to investigate the compliance of thermal insulation mortars, which are declared to be produced in accordance with the TS EN 998-1 standard in our country, with the other criteria specified in this standard, especially the thermal conductivity coefficient and pressure resistance, and to compare the findings with the declared values. For this purpose, plaster mortar samples were produced from thermal insulation plasters of five different local companies. Consistency determination, fresh unit volume mass, air content determination of the produced samples in the fresh state, and dry unit volume mass, compressive and bending strength, capillary water absorption, and thermal conductivity coefficient values in the hardened state were obtained. In addition, energy loss calculations and savings rates of traditional and thermal insulation plasters were determined. When the data obtained was evaluated, it was observed that a significant part of the insulation plasters did not meet the company-declared values. For this reason, more frequent checks should be made and inspections should be increased when companies are given approval. In this way, the quality of the products marketed by the companies will be increased and new generation environmentally friendly products that save energy will be delivered to the users.

References

  • Abu-Jdayil, B., Mourad, A. H., Hittini, W., Hassan, M., & Hameedi, S. (2019). Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials, 214, 709-735. https://doi.org/10.1016/j.conbuildmat.2019.04.102
  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366.
  • Altuncı, Y. T., & Ocal, C. (2021). Investigation of the Usability of Cotton Bagasse as Aggregate in Plaster Mortar. Journal of Süleyman Demirel University Institute of Science and Technology, 25(3), 558-563. https://doi.org/10.22312/sdufbed.1000007
  • Baloević, G., Radnić, J., Grgić, N., & Matešan, D. (2016). The application of a reinforced plaster mortar for seismic strengthening of masonry structures. Composites Part B: Engineering, 93, 190-202. https://doi.org/10.1016/j.compositesb.2016.03.007
  • Barbero S., Marco Dutto M., Ferrua C., & Pereno A. (2014). Analysis on existent thermal insulating plasters towards innovative applications: Evaluation methodology for a real cost-performance comparison, Energy and Buildings, 77, 40–47. https://doi.org/10.1016/j.enbuild.2014.03.037
  • Bektaş, V., Çerçevik, A. E., & Kandemir, S. Y. (2017). The Importance of Thermal Insulation in Buildings and the Effect of Thermal Insulation Material Thickness on Insulation. Bilecik Şeyh Edebali University Journal of Science, 4(1), 36-42. https://doi.org/10.18185/bseufbd.32048
  • Çolakoğlu, A. (2004). Investigation of the Feasibility of Thermal Insulating External Plaster in Buildings, Master's Thesis, Süleyman Demirel University, Isparta.
  • Çomaklı, K., & Yüksel, B. (2004). Environmental impact of thermal insulation thickness in buildings. Applied Thermal Engineering, 24(5-6), 933-940. https://doi.org/10.1016/j.applthermaleng.2003.10.020
  • Davraz, M., Gündüz, L., & Başpınar, E. (2011). Lightweight aggregated foam plaster for thermal insulation in buildings. Journal of Engineering Sciences and Design, 1(3), 150-155. https://doi.org/10.16990/jesd.32048
  • Davraz, M., & Kılınçarslan, Ş., 2014. The Effect of Perlite Aggregate Plasters on Energy Saving in Buildings, II. International Davraz Symposium, 29-31 May 2014, Isparta.
  • Davraz, M., Koru, M., & Akdağ, A. E. (2015). The effect of physical properties on thermal conductivity of lightweight aggregate. Procedia Earth and Planetary Science, 15, 85-92. https://doi.org/10.1016/j.proeps.2015.08.022
  • Davraz, M., Koru, M., Akdağ, A. E., Kılınçarslan, Ş., Delikanlı, Y. E., & Çabuk, M. (2020). Investigating the use of raw perlite to produce monolithic thermal insulation material. Construction and Building Materials, 263, 120674. https://doi.org/10.1016/j.conbuildmat.2020.120674
  • Dilmaç, Ş., & Kesen, N., 2003. A Comparison of New Turkish Thermal Insulation Standard (TS-825). ISO 9164, EN 832 and German Regulation, Energy and Buildings, 35: 161- 174.
  • Dylewski R., & Adamczyk J. (2014). The comparison of thermal insulation types of plaster with cement plaster, Journal of Cleaner Production, 83, 256-262.
  • Dylewski, R., & Adamczyk, J. (2011). Economic and environmental benefits of thermal insulation of building external walls. Building and Environment, 46(12), 2615-2623.
  • Faria, P., Santos, T., & Aubert, J. E. (2016). Experimental characterization of an earth eco-efficient plastering mortar. Journal of Materials in Civil Engineering, 28(1), 04015085. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001363 İzoder, 2002. Turkish Construction Sector and Insulation Market Evaluation Report. Istanbul.
  • Manohar, K. (2012). Experimental investigation of building thermal insulation from agricultural by-products. British Journal of Applied Science & Technology, 2(3), 227-239.
  • Matoušková, E., Pavelka, K., & Ibrahim, S. (2021). Creating a Material Spectral Library for Plaster and Mortar Material Determination. Materials, 14(22), 7030. https://doi.org/10.3390/ma14227030
  • Molnar, L. M., & Manea, D. L. (2016). New types of plastering mortars based on marble powder slime. Procedia technology, 22, 251-258. https://doi.org/10.1016/j.protcy.2016.01.076
  • Nascimento, A. S., dos Santos, C. P., de Melo, F. M. C., Oliveira, V. G. A., Oliveira, R. M. P. B., Macedo, Z. S., & de Oliveira, H. A. (2020). Production of plaster mortar with incorporation of granite cutting wastes. Journal of Cleaner Production, 265, 121808. https://doi.org/10.1016/j.jclepro.2020.121808
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and buildings, 37(1), 77-86.
  • Papadopoulos, A. M., & Giama, E. (2007). Environmental performance evaluation of thermal insulation materials and its impact on the building. Building and environment, 42(5), 2178-2187.
  • Pásztory, Z. (2021). An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering, 44, 102604. https://doi.org/10.1016/j.jobe.2021.102604
  • Santos, T., Faria, P., & Silva, V. (2019). Can an earth plaster be efficient when applied on different masonries?. Journal of Building Engineering, 23, 314-323. https://doi.org/10.1016/j.jobe.2019.02.011
  • TS EN 1015-10, 2001. Determination of Dry Unit Volume Mass of Hardened Mortar with Voids, Ankara.
  • TS EN 1015-11, 2000. Determination of Compressive and Flexural Strength of Hardened Mortar, Ankara.
  • TS EN 1015-18, 2004. Determination of Water Absorption Coefficient of Hardened Mortar During Capillary Effects, Ankara.
  • TS EN 1015-3, 2000. Determination of Fresh Mortar Consistency. Necatibey Caddesi No:112 Ministries, Ankara.
  • TS EN 1015-6, 2000. Determination of Void Unit Volume Mass of Fresh Mortar, Ankara.
  • TS EN 1015-7, 2000. Determination of Air Content of Fresh Mortar, Necatibey Caddesi No:112 Ministries, Ankara.
  • Tychanicz-Kwiecień, M., Wilk, J., & Gil, P. (2019). Review of high-temperature thermal insulation materials. Journal of Thermophysics and heat transfer, 33(1), 271-284. https://doi.org/10.2514/1.T5420
  • Villasmil, W., Fischer, L. J., & Worlitschek, J. (2019). A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 103, 71-84. https://doi.org/10.1016/j.rser.2018.12.040
  • Xu, Z., Zhu, Z., Zhao, Y., Guo, Z., Chen, G., Liu, C., Chen, X. (2022). Production of sustainable plastering mortar containing waste clay brick aggregates. Case Studies in Construction Materials, 16, e01120. https://doi.org/10.1016/j.cscm.2022.e01120
  • Yetkin, M., Calayır, Y., & Alyamaç, K. E. (2024). The effect of mortar and bond type on mechanical parameters of masonry walls. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(1), 621-634. https://doi.org/10.17341/gazimmfd.1080258
  • Yi, W., Xiling, Z., Jinglin, Y., Wenxuan, W., & Tian, T. (2023). A comprehensive performance evaluation of the cement-based expanded perlite plastering mortar. Science of The Total Environment, 858, 159705. https://doi.org/10.1016/j.scitotenv.2022.159705
  • Zach J., Hela R., Sedlmajer M., Hroudova J., (2013). Development of Thermal Insulation Plasters for Insulating and Sanitation of Building Constructions, IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013, https://doi.org/10.7763/IJET.2013.V5.582
  • Zach, J., Hroudová, J., Brožovský, J., Krejza, Z., & Gailius, A. (2013). Development of thermal insulating materials on natural base for thermal insulation systems. Procedia Engineering, 57, 1288-1294. https://doi.org/10.1016/j.proeng.2013.04.162
There are 37 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Civil Engineering
Authors

Şemsettin Kılınçarslan 0000-0001-8253-9357

Metin Davraz 0000-0002-6069-7802

Yasemin Şimşek Türker 0000-0002-3080-0215

Mehmet Ali Akbulut 0009-0007-0635-4618

Publication Date March 3, 2025
Submission Date June 27, 2024
Acceptance Date January 29, 2025
Published in Issue Year 2025Volume: 28 Issue: 1

Cite

APA Kılınçarslan, Ş., Davraz, M., Şimşek Türker, Y., Akbulut, M. A. (2025). DETERMINATION OF PHYSICAL, MECHANICAL, THERMAL PROPERTIES OF READY THERMAL INSULATION PLASTERS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 19-29.