Research Article
BibTex RIS Cite

ÇORAP BOYAMA ATIKSULARININ FENTON VE ELEKTRO-FENTON PROSESLERİ İLE ARITIMI

Year 2025, Volume: 28 Issue: 1, 80 - 88, 03.03.2025

Abstract

Tekstil endüstrisi hem dünya genelinde hem de Türkiye'de sürekli olarak gelişmekte olan bir sektördür ve üretim kapasitesi her geçen gün artmaktadır. Ancak bu büyüme artan atıksu problemini de beraberinde getirmektedir. Üretim süreci sonrasında ortaya çıkan atıksular, kullanılan kimyasallara ve boyalara bağlı olarak kirlilik derecesi değişkenlik göstermektedir. Bu atıksular genellikle renkli, yüksek organik içerikli ve biyolojik olarak parçalanması zor bileşenler içermektedir. Bu çalışma, bir tekstil fabrikasından alınan çorap boyama atıksularının klasik Fenton (KF) ve elektro-fenton (EF) prosesleri ile arıtılabilirliğini incelemektedir. Çalışmada KF ve EF proseslerinin arıtma verimliliği, renk ve KOİ (Kimyasal Oksijen İhtiyacı) giderimine etkisi değerlendirilmiştir. KF prosesinde zaman, Fe+2 ve H2O2 konsantrasyonunu parametrelerin etkisi, EF prosesinde ise zaman, voltaj, H2O2 konsantrasyonu ve elektrotlar arası mesafe parametrelerin etkisi incelenmiştir. Elde edilen sonuçlara göre, KF prosesi için %96 KOİ ve %75 renk giderim, EF prosesi için %99 KOİ giderimi ve %85 renk giderimi sağlanmıştır. Bu bulgular, EF prosesinin daha etkili bir çözüm olduğunu göstermektedir. Sonuç olarak KF prosesi yüksek KOİ giderimi sağlasa da renk gideriminde yetersiz kalmaktadır. Buna karşılık EF prosesi daha etkili bir şekilde atıksuların arıtılmasını sağlamaktadır. Bu çalışma, çorap boyama atıksularının arıtımında EF prosesinin önemli bir potansiyele sahip olduğunu göstermektedir

Thanks

Bu çalışma, “Çorap Boyama Fabrikası Atıksuyunun Fenton ve Elektro-Fenton Prosesleri ile Arıtılabilirliği” konulu yüksek lisans tezinden türetilmiştir.

References

  • Alkaya, E., & Demirer, G. N. (2014). Sustainable textile production: A case study from a woven fabric manufacturing mill in Turkey. Journal of Cleaner Production, 65, 595–603. https://doi.org/10.1016/j.jclepro.2013.07.008
  • Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6(July), 100230. https://doi.org/10.1016/j.cscee.2022.100230
  • Ćurić, I., Dolar, D., & Karadakić, K. (2021). Textile wastewater reusability in knitted fabric washing process using UF membrane technology. Journal of Cleaner Production, 299, 126899. https://doi.org/10.1016/J.JCLEPRO.2021.126899
  • GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189–197. https://doi.org/10.1016/j.jenvman.2017.01.015
  • Gürtekin, E., & Şekerdağ, N. (2008). Bir ileri oksidasyon prosesi: Fenton proses. Journal of Engineering Sciences, 14(3), 229–236.
  • Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A. B., & Sekaran, G. (2011). Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, 281(1), 438–445. https://doi.org/10.1016/j.desal.2011.08.019
  • Kaur, P., Kushwaha, J. P., & Sangal, V. K. (2018). Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process. Chemosphere, 207, 690–698. https://doi.org/10.1016/j.chemosphere.2018.05.114
  • Kim, T. H., Park, C., Shin, E. B., & Kim, S. (2002). Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination, 150(2), 165–175. https://doi.org/10.1016/S0011-9164(02)00941-4
  • Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., … Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012. https://doi.org/10.1016/J.JECE.2020.105012
  • Kuleyin, A., Gök, A., & Akbal, F. (2021). Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104782
  • Luo, Z., Liu, M., Tang, D., Xu, Y., Ran, H., He, J., … Sun, J. (2022). High H2O2 selectivity and enhanced Fe2+ regeneration toward an effective electro-Fenton process based on a self-doped porous biochar cathode. Applied Catalysis B: Environmental, 315(April), 121523. https://doi.org/10.1016/j.apcatb.2022.121523
  • Malakootian, M., & Moridi, A. (2017). Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions. Process Safety and Environmental Protection, 111, 138–147. https://doi.org/10.1016/j.psep.2017.06.008
  • Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Research, 43(2), 339–344. https://doi.org/10.1016/j.watres.2008.10.028
  • Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376(December 2018), 120597. https://doi.org/10.1016/j.cej.2018.12.057
  • Pelalak, R., Hassani, A., Heidari, Z., & Zhou, M. (2023). State-of-the-art recent applications of layered double hydroxides (LDHs) material in Fenton-based oxidation processes for water and wastewater treatment. Chemical Engineering Journal, 474(June). https://doi.org/10.1016/j.cej.2023.145511
  • Raja, A. S. M., Arputharaj, A., Saxena, S., & Patil, P. G. (2019). Water requirement and sustainability of textile processing industries. Water in Textiles and Fashion: Consumption, Footprint, and Life Cycle Assessment, 155–173. https://doi.org/10.1016/B978-0-08-102633-5.00009-9
  • Ramirez-Pereda, B., Álvarez-Gallegos, A., Bustos-Terrones, Y. A., Silva-Martínez, S., & Hernández-Pérez, A. (2020). Effective Electro-Fenton Treatment for a Real Textile Effluent: A Case Study. Journal of Water Process Engineering, 37(February). https://doi.org/10.1016/j.jwpe.2020.101434
  • Ramos, M. D. N., Santana, C. S., Velloso, C. C. V., da Silva, A. H. M., Magalhães, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/10.1016/j.psep.2021.09.029
  • Santana-Martínez, G., Roa-Morales, G., Del Campo, E. M., Romero, R., Frontana-Uribe, B. A., & Natividad, R. (2016). Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochimica Acta, 195, 246–256. https://doi.org/10.1016/j.electacta.2016.02.093
  • Sobczak, M., Bujnowicz, S., & Bilińska, L. (2024). Fenton and electro-Fenton treatment for industrial textile wastewater recycling. Comparison of by-products removal, biodegradability, toxicity, and re-dyeing. Water Resources and Industry, 31(December 2023), 1–14. https://doi.org/10.1016/j.wri.2024.100256
  • Temur Ergan, B., Aydin, E. S., & Gengec, E. (2023). Improving electro-fenton degradation performance using waste biomass-derived-modified biochar electrodes: A real environment textile water treatment. Journal of Environmental Chemical Engineering, 11(6). https://doi.org/10.1016/j.jece.2023.111439
  • Uddin, F. (2021). Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose, 28(17), 10715–10739. https://doi.org/10.1007/s10570-021-04228-4

TREATMENT OF SOCK DYEING WASTEWATER BY FENTON AND ELECTRO-FENTON PROCESSES

Year 2025, Volume: 28 Issue: 1, 80 - 88, 03.03.2025

Abstract

The global textile industry, including Turkey, is continuously expanding, leading to an increase in production capacity and consequently, a rise in wastewater generation. The pollution levels in this wastewater depend on the chemicals and dyes used in the manufacturing process. Typically, textile wastewater is colored, has high organic content, and contains components that are challenging to degrade biologically. This study investigates the treatability of wastewater from a textile factory's sock dyeing process using conventional Fenton (CF) and electro-Fenton (EF) processes. The study focuses on the effectiveness of these processes in removing color and chemical oxygen demand (COD) from the wastewater. Key parameters such as time, Fe+2 concentration, and H2O2 concentration were analyzed in the CF process, while the EF process examined the effects of time, voltage, H2O2 concentration, and electrode distance. The results showed that the CF process achieved 96% COD and 75% color removal, whereas the EF process achieved superior results with 99% COD and 85% color removal. These findings suggest that the EF process is a more effective method for treating textile wastewater, particularly in terms of color removal. This study highlights the significant potential of the EF process in improving wastewater treatment efficiency in the textile industry.

References

  • Alkaya, E., & Demirer, G. N. (2014). Sustainable textile production: A case study from a woven fabric manufacturing mill in Turkey. Journal of Cleaner Production, 65, 595–603. https://doi.org/10.1016/j.jclepro.2013.07.008
  • Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6(July), 100230. https://doi.org/10.1016/j.cscee.2022.100230
  • Ćurić, I., Dolar, D., & Karadakić, K. (2021). Textile wastewater reusability in knitted fabric washing process using UF membrane technology. Journal of Cleaner Production, 299, 126899. https://doi.org/10.1016/J.JCLEPRO.2021.126899
  • GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189–197. https://doi.org/10.1016/j.jenvman.2017.01.015
  • Gürtekin, E., & Şekerdağ, N. (2008). Bir ileri oksidasyon prosesi: Fenton proses. Journal of Engineering Sciences, 14(3), 229–236.
  • Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A. B., & Sekaran, G. (2011). Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, 281(1), 438–445. https://doi.org/10.1016/j.desal.2011.08.019
  • Kaur, P., Kushwaha, J. P., & Sangal, V. K. (2018). Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process. Chemosphere, 207, 690–698. https://doi.org/10.1016/j.chemosphere.2018.05.114
  • Kim, T. H., Park, C., Shin, E. B., & Kim, S. (2002). Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination, 150(2), 165–175. https://doi.org/10.1016/S0011-9164(02)00941-4
  • Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., … Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012. https://doi.org/10.1016/J.JECE.2020.105012
  • Kuleyin, A., Gök, A., & Akbal, F. (2021). Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104782
  • Luo, Z., Liu, M., Tang, D., Xu, Y., Ran, H., He, J., … Sun, J. (2022). High H2O2 selectivity and enhanced Fe2+ regeneration toward an effective electro-Fenton process based on a self-doped porous biochar cathode. Applied Catalysis B: Environmental, 315(April), 121523. https://doi.org/10.1016/j.apcatb.2022.121523
  • Malakootian, M., & Moridi, A. (2017). Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions. Process Safety and Environmental Protection, 111, 138–147. https://doi.org/10.1016/j.psep.2017.06.008
  • Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Research, 43(2), 339–344. https://doi.org/10.1016/j.watres.2008.10.028
  • Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376(December 2018), 120597. https://doi.org/10.1016/j.cej.2018.12.057
  • Pelalak, R., Hassani, A., Heidari, Z., & Zhou, M. (2023). State-of-the-art recent applications of layered double hydroxides (LDHs) material in Fenton-based oxidation processes for water and wastewater treatment. Chemical Engineering Journal, 474(June). https://doi.org/10.1016/j.cej.2023.145511
  • Raja, A. S. M., Arputharaj, A., Saxena, S., & Patil, P. G. (2019). Water requirement and sustainability of textile processing industries. Water in Textiles and Fashion: Consumption, Footprint, and Life Cycle Assessment, 155–173. https://doi.org/10.1016/B978-0-08-102633-5.00009-9
  • Ramirez-Pereda, B., Álvarez-Gallegos, A., Bustos-Terrones, Y. A., Silva-Martínez, S., & Hernández-Pérez, A. (2020). Effective Electro-Fenton Treatment for a Real Textile Effluent: A Case Study. Journal of Water Process Engineering, 37(February). https://doi.org/10.1016/j.jwpe.2020.101434
  • Ramos, M. D. N., Santana, C. S., Velloso, C. C. V., da Silva, A. H. M., Magalhães, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/10.1016/j.psep.2021.09.029
  • Santana-Martínez, G., Roa-Morales, G., Del Campo, E. M., Romero, R., Frontana-Uribe, B. A., & Natividad, R. (2016). Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochimica Acta, 195, 246–256. https://doi.org/10.1016/j.electacta.2016.02.093
  • Sobczak, M., Bujnowicz, S., & Bilińska, L. (2024). Fenton and electro-Fenton treatment for industrial textile wastewater recycling. Comparison of by-products removal, biodegradability, toxicity, and re-dyeing. Water Resources and Industry, 31(December 2023), 1–14. https://doi.org/10.1016/j.wri.2024.100256
  • Temur Ergan, B., Aydin, E. S., & Gengec, E. (2023). Improving electro-fenton degradation performance using waste biomass-derived-modified biochar electrodes: A real environment textile water treatment. Journal of Environmental Chemical Engineering, 11(6). https://doi.org/10.1016/j.jece.2023.111439
  • Uddin, F. (2021). Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose, 28(17), 10715–10739. https://doi.org/10.1007/s10570-021-04228-4
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention, Environmental Engineering (Other)
Journal Section Environmental Engineering
Authors

İbrahim Yoksulabakan 0000-0002-5875-3350

Özgecan Madenli 0000-0002-8673-3963

Ece Ümmü Deveci 0000-0002-7551-188X

Publication Date March 3, 2025
Submission Date July 18, 2024
Acceptance Date August 21, 2024
Published in Issue Year 2025Volume: 28 Issue: 1

Cite

APA Yoksulabakan, İ., Madenli, Ö., & Deveci, E. Ü. (2025). ÇORAP BOYAMA ATIKSULARININ FENTON VE ELEKTRO-FENTON PROSESLERİ İLE ARITIMI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 80-88.