EVALUATION OF THE STRENGTH PROPERTIES OF A CLAY SOIL STABILIZED WITH FLY ASH AND BIOPOLYMER USING THE TAGUCHI TECHNIQUE
Year 2025,
Volume: 28 Issue: 1, 89 - 103, 03.03.2025
Mehmet Fatih Yazıcı
,
Mehmet Fahri Saraç
,
Çağla Aydın
,
Melce Begüm Polat
,
Can Mustafa Çalık
,
Caner Özen
Abstract
Researchers in geotechnical engineering have used traditional chemical additives such as cement and lime for many years to improve problematic soils. In addition to the benefits of these materials in soil stabilization, their environmental damage cannot be ignored. For this reason, researchers have been trying to achieve the best in environment, sustainability, economy, and other benefits by conducting tests with different stabilization materials in laboratory and field conditions for years. To achieve the goal mentioned above, this study assessed the combined effects of fly ash, a waste with excellent pozzolanic properties, and guar gum, which has recently become a favorite of geotechnical researchers in terms of environmental friendliness and sustainability, on the strength properties of clay soil. Taguchi’s design of the experiment method was used to carry out the experimental process by saving time, labour, and cost. As a result, the unconfined compressive strength of the natural soil increased by 6.5 times, and the secant elasticity modulus increased by 20.4 times with the addition of fly ash and biopolymer. The results were compared with the strength properties of specimens stabilized only fly ash and lime, and it was observed that adding fly ash and guar gum to the clay soil increased strength much more.
References
- Abd Elaty, M. A. A., Azzam, W. R., & Eldesoky, A. G. (2023). Properties of cement–bentonite mortar developed by mineral additives for primary firm secant pile by Taguchi method. Innovative Infrastructure Solutions, 8(10), 259.
- Ackah, F. S., Hailiang, W., Huaiping, F., Cheng, L., & Feng, L. Z. (2022). Use of Taguchi method to evaluate the unconfined compressive strength of quicklime stabilized silty clayey subgrade. Case Studies in Construction Materials, 17, e01417.
- Ahmad, S., Shah Alam Ghazi, M., Syed, M., & Al-Osta, M. A. (2024). Utilization of fly ash with and without secondary additives for stabilizing expansive soils: A review. Results in Engineering, 22, 102079. https://doi.org/10.1016/J.RINENG.2024.102079
- Ahn, S., Ryou, J.-E., Ahn, K., Lee, C., Lee, J.-D., Jung, J., … Kopel, P. (2021). Evaluation of Dynamic Properties of Sodium-Alginate-Reinforced Soil Using A Resonant-Column Test. Materials, 14(11), 2743. https://doi.org/10.3390/MA14112743
- Akbulut, S., & Arasan, S. (2010). The Variations of Cation Exchange Capacity, pH, and Zeta Potential in Expansive Soils Treated by Additives. Internatioanl Journal of Civil and Structural Engineering, 1(2), 139–154.
- ASTM C 618-03, 2003. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM, United States.
- ASTM D 2166-06, 2006. StandardTest Method for Unconfined Compressive Strength of Cohesive Soil, ASTM, United States.
- ASTM D 422-63, 2007b. Standard Test Method for Particle-Size Analysis of Soils, ASTM, United States.
ASTM D 4318, 2000. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM, United States.
- ASTM D 698-07, 2007a. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM, United States.
- ASTM D 854-02, 2002. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM, United States.
- Ayeldeen, M., Negm, A., El-Sawwaf, M., & Kitazume, M. (2017). Enhancing mechanical behaviors of collapsible soil using two biopolymers. Journal of Rock Mechanics and Geotechnical Engineering, 9(2), 329–339. https://doi.org/10.1016/J.JRMGE.2016.11.007
- Bagherinia, M. (2024). Mechanical, durability, and microstructure of soft clay stabilised with anionic biopolymer. Construction and Building Materials, 417, 135343. https://doi.org/10.1016/J.CONBUILDMAT.2024.135343
- Bagriacik, B., Ok, B., & Kahiyah, M. T. M. A. (2021). An experimental study on improvement of cohesive soil with eco-friendly guar gum. Soils and Rocks, 44(2), e2021060020. https://doi.org/10.28927/SR.2021.060020
- Bakare, M. D., Pai, R. R., Patel, S., & Shahu, J. T. (2019). Environmental Sustainability by Bulk Utilization of Fly Ash and GBFS as Road Subbase Materials. Journal of Hazardous, Toxic, and Radioactive Waste, 23(4), 04019011. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000450
- Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. https://doi.org/10.1016/0013-7952(96)00028-2
- Berkane, H. A., Della, N., Benziane, M. M., Denine, S., Elroul, A. B., & Feknous, H. (2022). Laboratory investigation on the effect of a combination of xanthan gum and clay on the behavior of sandy soil. Innovative Infrastructure Solutions, 7(4), 1–12. https://doi.org/10.1007/S41062-022-00867-Z/FIGURES/13
- Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23. https://doi.org/10.1016/J.FUEL.2012.03.024
- Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Azdeniz Dolmacı, Ö. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6), 1–14. https://doi.org/10.1007/S12517-018-3458-X/FIGURES/15
- Bozyigit, I., Javadi, A., & Altun, S. (2021). Strength properties of xanthan gum and guar gum treated kaolin at different water contents. Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1160–1172. https://doi.org/10.1016/J.JRMGE.2021.06.007
- Brooks, R., Udoeyo, F. F., & Takkalapelli, K. V. (2010). Geotechnical Properties of Problem Soils Stabilized with Fly Ash and Limestone Dust in Philadelphia. Journal of Materials in Civil Engineering, 23(5), 711–716. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214
- Chang, I., & Cho, G. C. (2012). Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer. Construction and Building Materials, 30, 30–35. https://doi.org/10.1016/J.CONBUILDMAT.2011.11.030
- Chang, I., Prasidhi, A. K., Im, J., Shin, H. D., & Cho, G. C. (2015). Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma, 253–254, 39–47. https://doi.org/10.1016/J.GEODERMA.2015.04.006
- Chudzikowski, J. R. (1971). Guar Gum and its Applications. Journal of the Society of Cosmetics Chemists, 22(1), 43.
- De Belie, N., Soutsos, M., & Gruyaert, E. (Eds.). (2018). Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials. 25. https://doi.org/10.1007/978-3-319-70606-1
- Degirmenci, N., Okucu, A., & Turabi, A. (2007). Application of phosphogypsum in soil stabilization. Building and Environment, 42(9), 3393–3398. https://doi.org/10.1016/J.BUILDENV.2006.08.010
- Dehghan, H., Tabarsa, A., Latifi, N., & Bagheri, Y. (2019). Use of xanthan and guar gums in soil strengthening. Clean Technologies and Environmental Policy, 21(1), 155–165. https://doi.org/10.1007/S10098-018-1625-0/FIGURES/9
- Eldaw, G. E. (1998, June 1). A study of guar seed and guar gum properties (Cyamopsis tetragonolabous). Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:31037745
- Eliaslankaran, Z., Daud, N. N. N., Yusoff, Z. M., & Rostami, V. (2021). Evaluation of the effects of cement and lime with rice husk ash as an additive on strength behavior of coastal soil. Materials, 14(5), 1140.
- Fatehi, H., Ong, D. E. L., Yu, J., & Chang, I. (2024). Sustainable soil treatment: Investigating the efficacy of carrageenan biopolymer on the geotechnical properties of soil. Construction and Building Materials, 411, 134627. https://doi.org/10.1016/J.CONBUILDMAT.2023.134627
- Hamed, E., & Demiröz, A. (2024). Optimization of geotechnical characteristics of clayey soils using fly ash and granulated blast furnace slag-based geopolymer. Construction and Building Materials, 441, 137488.
- Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Akram, O., Fang, C., … Madni, M. F. (2023). Geotechnical behavior of high-plastic clays treated with biopolymer: macro–micro-study. Environmental Earth Sciences, 82(3), 1–18. https://doi.org/10.1007/S12665-023-10760-2/TABLES/6
- Harichane, K., Ghrici, M., Kenai, S., & Grine, K. (2011). Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils. Geotechnical and Geological Engineering, 29(5), 759–769. https://doi.org/10.1007/S10706-011-9415-Z/FIGURES/6
- Hataf, N., Ghadir, P., & Ranjbar, N. (2018). Investigation of soil stabilization using chitosan biopolymer. Journal of Cleaner Production, 170, 1493–1500. https://doi.org/10.1016/J.JCLEPRO.2017.09.256
- Kang, X., Kang, G.-C., Chang, K.-T., & Ge, L. (2014). Chemically Stabilized Soft Clays for Road-Base Construction. Journal of Materials in Civil Engineering, 27(7), 04014199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001156
- Keleştemur, O., Yildiz, S., Gökçer, B., & Arici, E. (2014). Statistical analysis for freeze–thaw resistance of cement mortars containing marble dust and glass fiber. Materials & Design, 60, 548–555. https://doi.org/10.1016/J.MATDES.2014.04.013
- Khaleghi, M., & Heidarvand, M. (2023). A novel study on hydro-mechanical characteristics of biopolymer-stabilized dune sand. Journal of Cleaner Production, 398, 136518.
- Kim, B., & Prezzi, M. (2008). Evaluation of the mechanical properties of class-F fly ash. Waste Management, 28(3), 649–659. https://doi.org/10.1016/J.WASMAN.2007.04.006
- Kumar, M. A., Moghal, A. A. B., Vydehi, K. V., & Almajed, A. (2023). Embodied energy in the production of guar and xanthan biopolymers and their cross-linking effect in enhancing the geotechnical properties of cohesive soil. Buildings, 13(9), 2304.
- Lee, M., Kwon, Y. M., Park, D. Y., Chang, I., & Cho, G. C. (2022). Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-022-23823-4
- Lee, S., Chung, M., Park, H. M., Song, K.-I., & Chang, I. (2019). Xanthan Gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka. Journal of Materials in Civil Engineering, 31(11), 06019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909
- Mccarthy, M. J., Csetenyi, L. J., Sachdeva, A., & Jones, R. (2009, May). Role of Fly Ash in the Mitigation of Swelling in Lime Stabilised Sulfate-Bearing Soils. In World of Coal Ash (WOCA) Conference (pp. 1–18).
- Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: processing, properties and food applications-A Review. Journal of Food Science and Technology, 51(3), 409–418. https://doi.org/10.1007/S13197-011-0522-X
- Nalbantoǧlu, Z. (2004). Effectiveness of Class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. https://doi.org/10.1016/J.CONBUILDMAT.2004.03.011
- Nalbantoglu, Z., & Gucbilmez, E. (2001). Improvement of calcareous expansive soils in semi-arid environments. Journal of Arid Environments, 47(4), 453–463. https://doi.org/10.1006/JARE.2000.0726
- Ni, J., Li, S. S., & Geng, X. Y. (2022). Mechanical and biodeterioration behaviours of a clayey soil strengthened with combined carrageenan and casein. Acta Geotechnica, 17(12), 5411–5427. https://doi.org/10.1007/S11440-022-01588-4/FIGURES/11
- Nugent, R., Zhang, G., & Gambrell, R. (2009). Effect of Exopolymers on the Liquid Limit of Clays and Its Engineering Implications. Transportation Research Record, 2101(1), 34–43. https://doi.org/10.3141/2101-05
- Oliveira, P. J. V., & Reis, M. J. F. C. C. (2023). Effect of the Organic Matter Content on the Mechanical Properties of Soils Stabilized with Xanthan Gum. Applied Sciences, 13(8), 4787. https://doi.org/10.3390/APP13084787
- Parsons, R. L., & Kneebone, E. (2015). Field performance of fly ash stabilised subgrades. Proceedings of the Institution of Civil Engineers-Ground Improvement, 9(1), 33–38. https://doi.org/10.1680/GRIM.2005.9.1.33
- Phanikumar, B. R., & Sharma, R. S. (2007). Volume Change Behavior of Fly Ash-Stabilized Clays. Journal of Materials in Civil Engineering, 19(1), 67–74. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(67)
- Prabakar, J., Dendorkar, N., & Morchhale, R. K. (2004). Influence of fly ash on strength behavior of typical soils. Construction and Building Materials, 18(4), 263–267. https://doi.org/10.1016/J.CONBUILDMAT.2003.11.003
- Ramezani, S. J., Toufigh, M. M., & Toufigh, V. (2023). Utilization of glass powder and silica fume in sugarcane bagasse ash-based geopolymer for soil stabilization. Journal of Materials in Civil Engineering, 35(4), 04023042.
- Reddy, J. J., & Varaprasad, B. J. S. (2021). Long-term and durability properties of xanthan gum treated dispersive soils – An eco-friendly material. Materials Today: Proceedings, 44, 309–314. https://doi.org/10.1016/J.MATPR.2020.09.472
- Risica, D., Dentini, M., & Crescenzi, V. (2005). Guar gum methyl ethers. Part I. Synthesis and macromolecular characterization. Polymer, 46(26), 12247–12255. https://doi.org/10.1016/J.POLYMER.2005.10.083
- Saride, S., & Dutta, T. T. (2016). Effect of Fly-Ash Stabilization on Stiffness Modulus Degradation of Expansive Clays. Journal of Materials in Civil Engineering, 28(12), 04016166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001678
- Sengul, T., Akray, N., & Vitosoglu, Y. (2023). Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils. Construction and Building Materials, 400, 132590. https://doi.org/10.1016/J.CONBUILDMAT.2023.132590
- Senol, A., Edil, T. B., Bin-Shafique, M. S., Acosta, H. A., & Benson, C. H. (2006). Soft subgrades’ stabilization by using various fly ashes. Resources, Conservation and Recycling, 46(4), 365–376. https://doi.org/10.1016/J.RESCONREC.2005.08.005
- Sezer, A., Inan, G., Yilmaz, H. R., & Ramyar, K. (2006). Utilization of a very high lime fly ash for improvement of Izmir clay. Building and Environment, 41(2), 150–155. https://doi.org/10.1016/J.BUILDENV.2004.12.009
- Sharma, N. K., Swain, S. K., & Sahoo, U. C. (2012). Stabilization of a Clayey Soil with Fly Ash and Lime: A Micro Level Investigation. Geotechnical and Geological Engineering, 30(5), 1197–1205. https://doi.org/10.1007/S10706-012-9532-3/FIGURES/8
- Singh, S. P., & Das, R. (2020). Geo-engineering properties of expansive soil treated with xanthan gum biopolymer. Geomechanics and Geoengineering, 15(2), 107–122. https://doi.org/10.1080/17486025.2019.1632495
- Smitha, S., & Rangaswamy, K. (2020). Effect of Biopolymer Treatment on Pore Pressure Response and Dynamic Properties of Silty Sand. Journal of Materials in Civil Engineering, 32(8), 04020217. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003285
- Smitha, S., & Sachan, A. (2016). Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. International Journal of Geotechnical Engineering, 10(4), 387–400. https://doi.org/10.1080/19386362.2016.1152674
- Soldo, A., Miletić, M., & Auad, M. L. (2020). Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-019-57135-x
- Sujatha, E. R., Atchaya, S., Sivasaran, A., & Keerdthe, R. S. (2021). Enhancing the geotechnical properties of soil using xanthan gum—an eco-friendly alternative to traditional stabilizers. Bulletin of Engineering Geology and the Environment, 80(2), 1157–1167. https://doi.org/10.1007/S10064-020-02010-7/FIGURES/8
- Sujatha, E. R., & Saisree, S. (2019). Geotechnical behaviour of guar gum-treated soil. Soils and Foundations, 59(6), 2155–2166. https://doi.org/10.1016/J.SANDF.2019.11.012
- Sujatha, E. R., Sivaraman, S., & Subramani, A. K. (2020). Impact of hydration and gelling properties of guar gum on the mechanism of soil modification. Arabian Journal of Geosciences, 13(23), 1–12. https://doi.org/10.1007/S12517-020-06258-X/FIGURES/8
- Sulaiman, H., Taha, M. R., Abd Rahman, N., & Mohd Taib, A. (2022). Performance of soil stabilized with biopolymer materials – xanthan gum and guar gum. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103276. https://doi.org/10.1016/J.PCE.2022.103276
- Taguchi, G. (1987). System of Experimental Design, Unipub/Kraus, International Publication.
- Tastan, E. O., Edil, T. B., Benson, C. H., & Aydilek, A. H. (2011). Stabilization of Organic Soils with Fly Ash. Journal of Geotechnical and Geoenvironmental Engineering, 137(9), 819–833. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000502
- Thangaraj, R., & Thenmozhi, R. (2013). Industrial and Environmental Application of High Volume Fly Ash in Concrete Production. Nature Environment and Pollution Technology, 12(2), 315.
- TS 1900-1, 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 1: Fiziksel Özelliklerin Tayini. TSE, Ankara.
- Vydehi, K. V., & Moghal, A. A. B. (2021). Effect of Biopolymeric Stabilization on the Strength and Compressibility Characteristics of Cohesive Soil. Journal of Materials in Civil Engineering, 34(2), 04021428. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004068
- Zha, F., Liu, S., Du, Y., & Cui, K. (2008). Behavior of expansive soils stabilized with fly ash. Natural Hazards, 47, 509-523.
- Zhang, J., Meng, Z., Jiang, T., Wang, S., Zhao, J., & Zhao, X. (2022). Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process. Applied Sciences, 12(12), 6053. https://doi.org/10.3390/APP12126053
- Zhang, T., Liu, S., Cai, G., & Puppala, A. J. (2015). Experimental investigation of thermal and mechanical properties of lignin treated silt. Engineering Geology, 196, 1–11. https://doi.org/10.1016/J.ENGGEO.2015.07.003
UÇUCU KÜL VE GUAR SAKIZI İLE STABİLİZE EDİLMİŞ BİR KİL ZEMİNİN MUKAVEMET ÖZELLİKLERİNİN TAGUCHİ TEKNİĞİ KULLANILARAK DEĞERLENDİRİLMESİ
Year 2025,
Volume: 28 Issue: 1, 89 - 103, 03.03.2025
Mehmet Fatih Yazıcı
,
Mehmet Fahri Saraç
,
Çağla Aydın
,
Melce Begüm Polat
,
Can Mustafa Çalık
,
Caner Özen
Abstract
Geoteknik mühendisliğinde problemli zeminlerin iyileştirilmesinde araştırmacılar uzun yıllardır çimento ve kireç gibi geleneksel kimyasal katkıları yaygın bir şekilde kullanmaktadırlar. Bu malzemelerin zemin stabilizasyonunda sağladığı faydaların yani sıra çevresel açıdan getirdiği zararlar göz ardı edilemeyecek seviyelerdedir. Bu sebeple araştırmacılar yıllardır farklı stabilizasyon malzemeleri ile laboratuvar ve arazi şartlarında deneyler yaparak çevre, sürdürülebilirlik, ekonomiklik ve sağladığı diğer faydalar açısından en iyiye ulaşabilmenin çabasını vermektedirler. Bu çalışma, yukarıda bahsi geçen amaca ulaşabilmek için mükemmel puzolanik özelliklere sahip bir atık olan uçucu kül ile çevre dostu ve sürdürülebilirlik açısından son zamanlarda geoteknik araştırmacıların gözdesi olan guar sakızının bir kil zeminin mukavemet özellikleri üzerindeki birlikte etkilerini değerlendirmiştir. Zaman, emek ve maliyet açısından tasarruf ederek deneysel sürecin yürütülebilmesi için Taguchi deney tasarım yönteminden istifade edilmiştir. Sonuç olarak uçucu kül ve biyopolimer ilavesi ile doğal zeminin serbest basınç mukavemetinin 6,5, sekant elastisite modülünün ise 20,4 kata kadar artış gösterdiği görülmüştür. Elde edilen sonuçlar sadece uçucu kül ve sadece kireçle stabilize edilmiş numunelerin mukavemet özellikleri ile karşılaştırılmış ve kil zemine uçucu kül ile guar sakızı ilave etmenin çok daha yüksek mukavemet artışları verdiği gözlenmiştir.
Thanks
Bu çalışma, T.C. Enerji Piyasası Düzenleme Kurumu (EPDK) tarafından onaylanan “Poliüretan Stabilizatör ile Temel Dolgusunun Geliştirilmesi ve Saha Uygulamasının Yapılması” isimli Ar-Ge projesi kapsamında desteklenmektedir. Yazarlar bu destek için EPDK'ya teşekkür etmektedir.
References
- Abd Elaty, M. A. A., Azzam, W. R., & Eldesoky, A. G. (2023). Properties of cement–bentonite mortar developed by mineral additives for primary firm secant pile by Taguchi method. Innovative Infrastructure Solutions, 8(10), 259.
- Ackah, F. S., Hailiang, W., Huaiping, F., Cheng, L., & Feng, L. Z. (2022). Use of Taguchi method to evaluate the unconfined compressive strength of quicklime stabilized silty clayey subgrade. Case Studies in Construction Materials, 17, e01417.
- Ahmad, S., Shah Alam Ghazi, M., Syed, M., & Al-Osta, M. A. (2024). Utilization of fly ash with and without secondary additives for stabilizing expansive soils: A review. Results in Engineering, 22, 102079. https://doi.org/10.1016/J.RINENG.2024.102079
- Ahn, S., Ryou, J.-E., Ahn, K., Lee, C., Lee, J.-D., Jung, J., … Kopel, P. (2021). Evaluation of Dynamic Properties of Sodium-Alginate-Reinforced Soil Using A Resonant-Column Test. Materials, 14(11), 2743. https://doi.org/10.3390/MA14112743
- Akbulut, S., & Arasan, S. (2010). The Variations of Cation Exchange Capacity, pH, and Zeta Potential in Expansive Soils Treated by Additives. Internatioanl Journal of Civil and Structural Engineering, 1(2), 139–154.
- ASTM C 618-03, 2003. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM, United States.
- ASTM D 2166-06, 2006. StandardTest Method for Unconfined Compressive Strength of Cohesive Soil, ASTM, United States.
- ASTM D 422-63, 2007b. Standard Test Method for Particle-Size Analysis of Soils, ASTM, United States.
ASTM D 4318, 2000. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM, United States.
- ASTM D 698-07, 2007a. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM, United States.
- ASTM D 854-02, 2002. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM, United States.
- Ayeldeen, M., Negm, A., El-Sawwaf, M., & Kitazume, M. (2017). Enhancing mechanical behaviors of collapsible soil using two biopolymers. Journal of Rock Mechanics and Geotechnical Engineering, 9(2), 329–339. https://doi.org/10.1016/J.JRMGE.2016.11.007
- Bagherinia, M. (2024). Mechanical, durability, and microstructure of soft clay stabilised with anionic biopolymer. Construction and Building Materials, 417, 135343. https://doi.org/10.1016/J.CONBUILDMAT.2024.135343
- Bagriacik, B., Ok, B., & Kahiyah, M. T. M. A. (2021). An experimental study on improvement of cohesive soil with eco-friendly guar gum. Soils and Rocks, 44(2), e2021060020. https://doi.org/10.28927/SR.2021.060020
- Bakare, M. D., Pai, R. R., Patel, S., & Shahu, J. T. (2019). Environmental Sustainability by Bulk Utilization of Fly Ash and GBFS as Road Subbase Materials. Journal of Hazardous, Toxic, and Radioactive Waste, 23(4), 04019011. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000450
- Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. https://doi.org/10.1016/0013-7952(96)00028-2
- Berkane, H. A., Della, N., Benziane, M. M., Denine, S., Elroul, A. B., & Feknous, H. (2022). Laboratory investigation on the effect of a combination of xanthan gum and clay on the behavior of sandy soil. Innovative Infrastructure Solutions, 7(4), 1–12. https://doi.org/10.1007/S41062-022-00867-Z/FIGURES/13
- Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23. https://doi.org/10.1016/J.FUEL.2012.03.024
- Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Azdeniz Dolmacı, Ö. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6), 1–14. https://doi.org/10.1007/S12517-018-3458-X/FIGURES/15
- Bozyigit, I., Javadi, A., & Altun, S. (2021). Strength properties of xanthan gum and guar gum treated kaolin at different water contents. Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1160–1172. https://doi.org/10.1016/J.JRMGE.2021.06.007
- Brooks, R., Udoeyo, F. F., & Takkalapelli, K. V. (2010). Geotechnical Properties of Problem Soils Stabilized with Fly Ash and Limestone Dust in Philadelphia. Journal of Materials in Civil Engineering, 23(5), 711–716. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000214
- Chang, I., & Cho, G. C. (2012). Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer. Construction and Building Materials, 30, 30–35. https://doi.org/10.1016/J.CONBUILDMAT.2011.11.030
- Chang, I., Prasidhi, A. K., Im, J., Shin, H. D., & Cho, G. C. (2015). Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma, 253–254, 39–47. https://doi.org/10.1016/J.GEODERMA.2015.04.006
- Chudzikowski, J. R. (1971). Guar Gum and its Applications. Journal of the Society of Cosmetics Chemists, 22(1), 43.
- De Belie, N., Soutsos, M., & Gruyaert, E. (Eds.). (2018). Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials. 25. https://doi.org/10.1007/978-3-319-70606-1
- Degirmenci, N., Okucu, A., & Turabi, A. (2007). Application of phosphogypsum in soil stabilization. Building and Environment, 42(9), 3393–3398. https://doi.org/10.1016/J.BUILDENV.2006.08.010
- Dehghan, H., Tabarsa, A., Latifi, N., & Bagheri, Y. (2019). Use of xanthan and guar gums in soil strengthening. Clean Technologies and Environmental Policy, 21(1), 155–165. https://doi.org/10.1007/S10098-018-1625-0/FIGURES/9
- Eldaw, G. E. (1998, June 1). A study of guar seed and guar gum properties (Cyamopsis tetragonolabous). Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:31037745
- Eliaslankaran, Z., Daud, N. N. N., Yusoff, Z. M., & Rostami, V. (2021). Evaluation of the effects of cement and lime with rice husk ash as an additive on strength behavior of coastal soil. Materials, 14(5), 1140.
- Fatehi, H., Ong, D. E. L., Yu, J., & Chang, I. (2024). Sustainable soil treatment: Investigating the efficacy of carrageenan biopolymer on the geotechnical properties of soil. Construction and Building Materials, 411, 134627. https://doi.org/10.1016/J.CONBUILDMAT.2023.134627
- Hamed, E., & Demiröz, A. (2024). Optimization of geotechnical characteristics of clayey soils using fly ash and granulated blast furnace slag-based geopolymer. Construction and Building Materials, 441, 137488.
- Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Akram, O., Fang, C., … Madni, M. F. (2023). Geotechnical behavior of high-plastic clays treated with biopolymer: macro–micro-study. Environmental Earth Sciences, 82(3), 1–18. https://doi.org/10.1007/S12665-023-10760-2/TABLES/6
- Harichane, K., Ghrici, M., Kenai, S., & Grine, K. (2011). Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils. Geotechnical and Geological Engineering, 29(5), 759–769. https://doi.org/10.1007/S10706-011-9415-Z/FIGURES/6
- Hataf, N., Ghadir, P., & Ranjbar, N. (2018). Investigation of soil stabilization using chitosan biopolymer. Journal of Cleaner Production, 170, 1493–1500. https://doi.org/10.1016/J.JCLEPRO.2017.09.256
- Kang, X., Kang, G.-C., Chang, K.-T., & Ge, L. (2014). Chemically Stabilized Soft Clays for Road-Base Construction. Journal of Materials in Civil Engineering, 27(7), 04014199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001156
- Keleştemur, O., Yildiz, S., Gökçer, B., & Arici, E. (2014). Statistical analysis for freeze–thaw resistance of cement mortars containing marble dust and glass fiber. Materials & Design, 60, 548–555. https://doi.org/10.1016/J.MATDES.2014.04.013
- Khaleghi, M., & Heidarvand, M. (2023). A novel study on hydro-mechanical characteristics of biopolymer-stabilized dune sand. Journal of Cleaner Production, 398, 136518.
- Kim, B., & Prezzi, M. (2008). Evaluation of the mechanical properties of class-F fly ash. Waste Management, 28(3), 649–659. https://doi.org/10.1016/J.WASMAN.2007.04.006
- Kumar, M. A., Moghal, A. A. B., Vydehi, K. V., & Almajed, A. (2023). Embodied energy in the production of guar and xanthan biopolymers and their cross-linking effect in enhancing the geotechnical properties of cohesive soil. Buildings, 13(9), 2304.
- Lee, M., Kwon, Y. M., Park, D. Y., Chang, I., & Cho, G. C. (2022). Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-022-23823-4
- Lee, S., Chung, M., Park, H. M., Song, K.-I., & Chang, I. (2019). Xanthan Gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka. Journal of Materials in Civil Engineering, 31(11), 06019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909
- Mccarthy, M. J., Csetenyi, L. J., Sachdeva, A., & Jones, R. (2009, May). Role of Fly Ash in the Mitigation of Swelling in Lime Stabilised Sulfate-Bearing Soils. In World of Coal Ash (WOCA) Conference (pp. 1–18).
- Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: processing, properties and food applications-A Review. Journal of Food Science and Technology, 51(3), 409–418. https://doi.org/10.1007/S13197-011-0522-X
- Nalbantoǧlu, Z. (2004). Effectiveness of Class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. https://doi.org/10.1016/J.CONBUILDMAT.2004.03.011
- Nalbantoglu, Z., & Gucbilmez, E. (2001). Improvement of calcareous expansive soils in semi-arid environments. Journal of Arid Environments, 47(4), 453–463. https://doi.org/10.1006/JARE.2000.0726
- Ni, J., Li, S. S., & Geng, X. Y. (2022). Mechanical and biodeterioration behaviours of a clayey soil strengthened with combined carrageenan and casein. Acta Geotechnica, 17(12), 5411–5427. https://doi.org/10.1007/S11440-022-01588-4/FIGURES/11
- Nugent, R., Zhang, G., & Gambrell, R. (2009). Effect of Exopolymers on the Liquid Limit of Clays and Its Engineering Implications. Transportation Research Record, 2101(1), 34–43. https://doi.org/10.3141/2101-05
- Oliveira, P. J. V., & Reis, M. J. F. C. C. (2023). Effect of the Organic Matter Content on the Mechanical Properties of Soils Stabilized with Xanthan Gum. Applied Sciences, 13(8), 4787. https://doi.org/10.3390/APP13084787
- Parsons, R. L., & Kneebone, E. (2015). Field performance of fly ash stabilised subgrades. Proceedings of the Institution of Civil Engineers-Ground Improvement, 9(1), 33–38. https://doi.org/10.1680/GRIM.2005.9.1.33
- Phanikumar, B. R., & Sharma, R. S. (2007). Volume Change Behavior of Fly Ash-Stabilized Clays. Journal of Materials in Civil Engineering, 19(1), 67–74. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(67)
- Prabakar, J., Dendorkar, N., & Morchhale, R. K. (2004). Influence of fly ash on strength behavior of typical soils. Construction and Building Materials, 18(4), 263–267. https://doi.org/10.1016/J.CONBUILDMAT.2003.11.003
- Ramezani, S. J., Toufigh, M. M., & Toufigh, V. (2023). Utilization of glass powder and silica fume in sugarcane bagasse ash-based geopolymer for soil stabilization. Journal of Materials in Civil Engineering, 35(4), 04023042.
- Reddy, J. J., & Varaprasad, B. J. S. (2021). Long-term and durability properties of xanthan gum treated dispersive soils – An eco-friendly material. Materials Today: Proceedings, 44, 309–314. https://doi.org/10.1016/J.MATPR.2020.09.472
- Risica, D., Dentini, M., & Crescenzi, V. (2005). Guar gum methyl ethers. Part I. Synthesis and macromolecular characterization. Polymer, 46(26), 12247–12255. https://doi.org/10.1016/J.POLYMER.2005.10.083
- Saride, S., & Dutta, T. T. (2016). Effect of Fly-Ash Stabilization on Stiffness Modulus Degradation of Expansive Clays. Journal of Materials in Civil Engineering, 28(12), 04016166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001678
- Sengul, T., Akray, N., & Vitosoglu, Y. (2023). Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils. Construction and Building Materials, 400, 132590. https://doi.org/10.1016/J.CONBUILDMAT.2023.132590
- Senol, A., Edil, T. B., Bin-Shafique, M. S., Acosta, H. A., & Benson, C. H. (2006). Soft subgrades’ stabilization by using various fly ashes. Resources, Conservation and Recycling, 46(4), 365–376. https://doi.org/10.1016/J.RESCONREC.2005.08.005
- Sezer, A., Inan, G., Yilmaz, H. R., & Ramyar, K. (2006). Utilization of a very high lime fly ash for improvement of Izmir clay. Building and Environment, 41(2), 150–155. https://doi.org/10.1016/J.BUILDENV.2004.12.009
- Sharma, N. K., Swain, S. K., & Sahoo, U. C. (2012). Stabilization of a Clayey Soil with Fly Ash and Lime: A Micro Level Investigation. Geotechnical and Geological Engineering, 30(5), 1197–1205. https://doi.org/10.1007/S10706-012-9532-3/FIGURES/8
- Singh, S. P., & Das, R. (2020). Geo-engineering properties of expansive soil treated with xanthan gum biopolymer. Geomechanics and Geoengineering, 15(2), 107–122. https://doi.org/10.1080/17486025.2019.1632495
- Smitha, S., & Rangaswamy, K. (2020). Effect of Biopolymer Treatment on Pore Pressure Response and Dynamic Properties of Silty Sand. Journal of Materials in Civil Engineering, 32(8), 04020217. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003285
- Smitha, S., & Sachan, A. (2016). Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. International Journal of Geotechnical Engineering, 10(4), 387–400. https://doi.org/10.1080/19386362.2016.1152674
- Soldo, A., Miletić, M., & Auad, M. L. (2020). Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-019-57135-x
- Sujatha, E. R., Atchaya, S., Sivasaran, A., & Keerdthe, R. S. (2021). Enhancing the geotechnical properties of soil using xanthan gum—an eco-friendly alternative to traditional stabilizers. Bulletin of Engineering Geology and the Environment, 80(2), 1157–1167. https://doi.org/10.1007/S10064-020-02010-7/FIGURES/8
- Sujatha, E. R., & Saisree, S. (2019). Geotechnical behaviour of guar gum-treated soil. Soils and Foundations, 59(6), 2155–2166. https://doi.org/10.1016/J.SANDF.2019.11.012
- Sujatha, E. R., Sivaraman, S., & Subramani, A. K. (2020). Impact of hydration and gelling properties of guar gum on the mechanism of soil modification. Arabian Journal of Geosciences, 13(23), 1–12. https://doi.org/10.1007/S12517-020-06258-X/FIGURES/8
- Sulaiman, H., Taha, M. R., Abd Rahman, N., & Mohd Taib, A. (2022). Performance of soil stabilized with biopolymer materials – xanthan gum and guar gum. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103276. https://doi.org/10.1016/J.PCE.2022.103276
- Taguchi, G. (1987). System of Experimental Design, Unipub/Kraus, International Publication.
- Tastan, E. O., Edil, T. B., Benson, C. H., & Aydilek, A. H. (2011). Stabilization of Organic Soils with Fly Ash. Journal of Geotechnical and Geoenvironmental Engineering, 137(9), 819–833. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000502
- Thangaraj, R., & Thenmozhi, R. (2013). Industrial and Environmental Application of High Volume Fly Ash in Concrete Production. Nature Environment and Pollution Technology, 12(2), 315.
- TS 1900-1, 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 1: Fiziksel Özelliklerin Tayini. TSE, Ankara.
- Vydehi, K. V., & Moghal, A. A. B. (2021). Effect of Biopolymeric Stabilization on the Strength and Compressibility Characteristics of Cohesive Soil. Journal of Materials in Civil Engineering, 34(2), 04021428. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004068
- Zha, F., Liu, S., Du, Y., & Cui, K. (2008). Behavior of expansive soils stabilized with fly ash. Natural Hazards, 47, 509-523.
- Zhang, J., Meng, Z., Jiang, T., Wang, S., Zhao, J., & Zhao, X. (2022). Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process. Applied Sciences, 12(12), 6053. https://doi.org/10.3390/APP12126053
- Zhang, T., Liu, S., Cai, G., & Puppala, A. J. (2015). Experimental investigation of thermal and mechanical properties of lignin treated silt. Engineering Geology, 196, 1–11. https://doi.org/10.1016/J.ENGGEO.2015.07.003