Research Article
BibTex RIS Cite

EVALUATION OF THE VESSEL WITH DIFFERENT STENOSIS STRUCTURES USING CFD APPROACH

Year 2025, Volume: 28 Issue: 1, 245 - 257, 03.03.2025

Abstract

Stenosis of blood vessels is a common cardiovascular issue, and numerical simulation provides an accessible alternative to experimental studies. This study utilizes computational fluid dynamics (CFD) to simulate blood flow dynamics in stenotic vessels with varying dimensions and viscosity models, offering insights into how blood behaves under different conditions. Validation, conducted by comparing results with experimental data in the post-stenotic region, shows acceptable differences. Nine stenosis models were analyzed by altering stenosis length (from 13.75 mm to 27.5 mm) and height (from 2.2 mm to 4.4 mm) while testing three viscosity models: Newtonian, Power Law, and Carreau Law. Key variables such as wall shear stress (WSS), pressure drop, and maximum throat velocity were determined, and recirculation zones and streamline contours were observed. The results indicate that small changes in stenosis dimensions significantly impact flow dynamics. While Newtonian and Power Law models produce similar outcomes, different viscosity models alter flow results. Carreau Law shows maximum WSS values between 25 Pa and 125 Pa, compared to 1.5 to 10 Pa for the Newtonian and Power Law models under the same conditions.

References

  • Abugattas, C., Aguirre, A., Castillo, E., & Cruchaga, M. (2020). Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models. Applied Mathematical Modelling, 88, 529-549.
  • Ai, L., Zhang, L., Dai, W., Hu, C., Shung, K. K., & Hsiai, T. K. (2010). Real-time assessment of flow reversal in an eccentric arterial stenotic model. Journal of Biomechanics, 43(14), 2678-2683.
  • Basavaraja, P., Surendran, A., Gupta, A., Saba, L., Laird, J. R., Nicolaides, A., ... & Suri, J. S. (2017). Wall shear stress and oscillatory shear index distribution in carotid artery with varying degree of stenosis: a hemodynamic study. Journal of Mechanics in Medicine and Biology, 17(02), 1750037.
  • Chan, W. Y., Ding, Y., & Tu, J. Y. (2005). Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction. Anziam Journal, 47, C507-C523.
  • Cho, Y. I., & Kensey, K. R. (1991). Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 28(3-4), 241-262.
  • Costa, E. D. (2016). Hemodynamics in the Left Coronary Artery-numerical and in vitro approaches (Doctoral dissertation, Universidade do Porto (Portugal)).
  • Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., & Gimbrone, M. A. (1986). Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proceedings of the National Academy of Sciences, 83(7), 2114-2117.
  • Dolan, J. M., Kolega, J., & Meng, H. (2013). High wall shear stress and spatial gradients in vascular pathology. Kumar, G., Kumar, H., Mandia, K., Zunaid, M., Ansari, N. A., & Husain, A. (2021). Non-Newtonian pulsatile flow through an artery with two stenosis. Materials Today: Proceedings.
  • Elhanafy, A., Elsaid, A., & Guaily, A. (2020). Numerical investigation of hematocrit variation effect on blood flow in an arterial segment with variable stenosis degree. Journal of Molecular Liquids, 313, 113550.
  • Foong, L. K., Shirani, N., Toghraie, D., Zarringhalam, M., & Afrand, M. (2020). Numerical simulation of blood flow inside an artery under applying constant heat flux using Newtonian and non-Newtonian approaches for biomedical engineering. Computer Methods and Programs in Biomedicine, 190, 105375.
  • Gallo, D., Gülan, U., Di Stefano, A., Ponzini, R., Lüthi, B., Holzner, M., & Morbiducci, U. (2014). Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics. Journal of Biomechanics, 47(12), 3149-3155.
  • Hoskins, P. R., Loupas, T., & McDicken, W. N. (1990). A comparison of the Doppler spectra from human blood and artificial blood used in a flow phantom. Ultrasound in Medicine & Biology, 16(2), 141-147.
  • Kumar, G., Kumar, H., Mandia, K., Zunaid, M., Ansari, N. A., & Husain, A. (2021). Non-Newtonian pulsatile flow through an artery with two stenosis. Materials Today: Proceedings.
  • Lopes, D., Puga, H., Teixeira, J., & Lima, R. (2020). Blood flow simulations in patient-specific geometries of the carotid artery: a systematic review. Journal of Biomechanics, 110019.
  • Malek, A. M., Alper, S. L., & Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. Jama, 282(21), 2035-2042.
  • Marshall, I., Zhao, S., Papathanasopoulou, P., Hoskins, P., & Xu, X. Y. (2004). MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. Journal of Biomechanics, 37(5), 679-687.
  • Pandey, R., Kumar, M., & Srivastav, V. K. (2020). Numerical computation of blood hemodynamic through constricted human left coronary artery: Pulsatile simulations. Computer Methods and Programs in Biomedicine, 197, 105661.
  • Perinajová, R., Juffermans, J. F., Westenberg, J. J., van der Palen, R. L., van den Boogaard, P. J., Lamb, H. J., & Kenjereš, S. (2021). Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas. Computers in Biology and Medicine, 133, 104385.
  • Razavi, A., Shirani, E., & Sadeghi, M. R. (2011). Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. Journal of Biomechanics, 44(11), 2021-2030.
  • Rostami, S., Mozoun, M. A., Toghraie, D., Zarringhalam, M., & Goldanlou, A. S. (2020). Insight into the significance of blood flow inside stenosis coronary jointed with bypass vein: The case of anemic, normal, and hypertensive individuals. Computer Methods and Programs in Biomedicine, 196, 105560.
  • Samad, A., Husain, A., Zunaid, M., & Samad, A. (2017). Newtonian and Non-Newtonian Pulsatile Flows through an Artery with Stenosis. The Journal of Engineering Research [TJER], 14(2), 191-205.
  • Samady, H., Eshtehardi, P., McDaniel, M. C., Suo, J., Dhawan, S. S., Maynard, C., ... & Giddens, D. P. (2011). Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation, 124(7), 779-788.
  • Shaaban, A. M., & Duerinckx, A. J. (2000). Wall shear stress and early atherosclerosis: a review. American Journal of Roentgenology, 174(6), 1657-1665.
  • Sharifzadeh, B., Kalbasi, R., Jahangiri, M., Toghraie, D., & Karimipour, A. (2020). Computer modeling of pulsatile blood flow in elastic artery using a software program for application in biomedical engineering. Computer Methods and Programs in Biomedicine, 192, 105442.
  • Soulis, J. V., Giannoglou, G. D., Chatzizisis, Y. S., Farmakis, T. M., Giannakoulas, G. A., Parcharidis, G. E., & Louridas, G. E. (2006). Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis. Coronary Artery Disease, 17(4), 351-358.
  • Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiurai, V. S., Mabon, R. F., & Glagov, S. (1983). Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research, 53(4), 502-514.
  • Zhao, Y., Ping, J., Yu, X., Cui, Y., Yin, J., Sun, C., ... & Tang, L. (2021). Computational fluid dynamics simulation of time-resolved blood flow in Budd-Chiari syndrome with inferior vena cava stenosis and its implication for postoperative efficacy assessment. Clinical Biomechanics, 82, 105256.
  • Zun, P., Svitenkov, A., & Hoekstra, A. (2021). Effects of local coronary blood flow dynamics on the predictions of a model of in-stent restenosis. Journal of Biomechanics, 120, 110361.

FARKLI DARLIK YAPILARINA SAHİP DAMARIN HAD YAKLAŞIMI KULLANILARAK DEĞERLENDİRİLMESİ

Year 2025, Volume: 28 Issue: 1, 245 - 257, 03.03.2025

Abstract

Kan damarlarındaki stenoz, yaygın bir kardiyovasküler sorundur ve sayısal simülasyon, deneysel çalışmalara karşı erişilebilir bir alternatif sunar. Bu çalışma, hesaplamalı akışkanlar dinamiği (HAD) kullanarak farklı boyutlara ve viskozite modellerine sahip stenozlu damarlardaki kan akış dinamiklerini simüle etmektedir ve bu, kanın farklı koşullar altında nasıl davrandığına dair önemli bilgiler sağlamaktadır. Stenoz sonrası bölgedeki deneysel verilerle yapılan karşılaştırmalar sonucunda doğrulama, kabul edilebilir farklılıklar göstermektedir. Stenoz uzunluğu (13.75 mm'den 27.5 mm'ye) ve yüksekliği (2.2 mm'den 4.4 mm'ye) değiştirilerek dokuz farklı stenoz modeli analiz edilmiş ve üç viskozite modeli (Newtonian, Power Law, Carreau Yasası) test edilmiştir. Temel değişkenler olan duvar kayma gerilimi (WSS), basınç düşüşü ve maksimum boğaz hızı belirlendi ve resirkülasyon bölgeleri ile akım çizgileri konturları gözlemlendi. Sonuçlar, stenoz boyutlarındaki küçük değişikliklerin akış dinamiklerini önemli ölçüde etkilediğini göstermektedir. Newtonian ve Power Law modelleri benzer sonuçlar üretirken, farklı viskozite modelleri akış sonuçlarını değiştirmektedir. Carreau Law Modeli, maksimum WSS değerlerini 25 Pa ile 125 Pa arasında gösterirken, Newtonian ve Power Law modelleri aynı koşullar altında 1.5 ile 10 Pa arasında değerler göstermektedir.

References

  • Abugattas, C., Aguirre, A., Castillo, E., & Cruchaga, M. (2020). Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models. Applied Mathematical Modelling, 88, 529-549.
  • Ai, L., Zhang, L., Dai, W., Hu, C., Shung, K. K., & Hsiai, T. K. (2010). Real-time assessment of flow reversal in an eccentric arterial stenotic model. Journal of Biomechanics, 43(14), 2678-2683.
  • Basavaraja, P., Surendran, A., Gupta, A., Saba, L., Laird, J. R., Nicolaides, A., ... & Suri, J. S. (2017). Wall shear stress and oscillatory shear index distribution in carotid artery with varying degree of stenosis: a hemodynamic study. Journal of Mechanics in Medicine and Biology, 17(02), 1750037.
  • Chan, W. Y., Ding, Y., & Tu, J. Y. (2005). Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction. Anziam Journal, 47, C507-C523.
  • Cho, Y. I., & Kensey, K. R. (1991). Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 28(3-4), 241-262.
  • Costa, E. D. (2016). Hemodynamics in the Left Coronary Artery-numerical and in vitro approaches (Doctoral dissertation, Universidade do Porto (Portugal)).
  • Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., & Gimbrone, M. A. (1986). Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proceedings of the National Academy of Sciences, 83(7), 2114-2117.
  • Dolan, J. M., Kolega, J., & Meng, H. (2013). High wall shear stress and spatial gradients in vascular pathology. Kumar, G., Kumar, H., Mandia, K., Zunaid, M., Ansari, N. A., & Husain, A. (2021). Non-Newtonian pulsatile flow through an artery with two stenosis. Materials Today: Proceedings.
  • Elhanafy, A., Elsaid, A., & Guaily, A. (2020). Numerical investigation of hematocrit variation effect on blood flow in an arterial segment with variable stenosis degree. Journal of Molecular Liquids, 313, 113550.
  • Foong, L. K., Shirani, N., Toghraie, D., Zarringhalam, M., & Afrand, M. (2020). Numerical simulation of blood flow inside an artery under applying constant heat flux using Newtonian and non-Newtonian approaches for biomedical engineering. Computer Methods and Programs in Biomedicine, 190, 105375.
  • Gallo, D., Gülan, U., Di Stefano, A., Ponzini, R., Lüthi, B., Holzner, M., & Morbiducci, U. (2014). Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics. Journal of Biomechanics, 47(12), 3149-3155.
  • Hoskins, P. R., Loupas, T., & McDicken, W. N. (1990). A comparison of the Doppler spectra from human blood and artificial blood used in a flow phantom. Ultrasound in Medicine & Biology, 16(2), 141-147.
  • Kumar, G., Kumar, H., Mandia, K., Zunaid, M., Ansari, N. A., & Husain, A. (2021). Non-Newtonian pulsatile flow through an artery with two stenosis. Materials Today: Proceedings.
  • Lopes, D., Puga, H., Teixeira, J., & Lima, R. (2020). Blood flow simulations in patient-specific geometries of the carotid artery: a systematic review. Journal of Biomechanics, 110019.
  • Malek, A. M., Alper, S. L., & Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. Jama, 282(21), 2035-2042.
  • Marshall, I., Zhao, S., Papathanasopoulou, P., Hoskins, P., & Xu, X. Y. (2004). MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. Journal of Biomechanics, 37(5), 679-687.
  • Pandey, R., Kumar, M., & Srivastav, V. K. (2020). Numerical computation of blood hemodynamic through constricted human left coronary artery: Pulsatile simulations. Computer Methods and Programs in Biomedicine, 197, 105661.
  • Perinajová, R., Juffermans, J. F., Westenberg, J. J., van der Palen, R. L., van den Boogaard, P. J., Lamb, H. J., & Kenjereš, S. (2021). Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas. Computers in Biology and Medicine, 133, 104385.
  • Razavi, A., Shirani, E., & Sadeghi, M. R. (2011). Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. Journal of Biomechanics, 44(11), 2021-2030.
  • Rostami, S., Mozoun, M. A., Toghraie, D., Zarringhalam, M., & Goldanlou, A. S. (2020). Insight into the significance of blood flow inside stenosis coronary jointed with bypass vein: The case of anemic, normal, and hypertensive individuals. Computer Methods and Programs in Biomedicine, 196, 105560.
  • Samad, A., Husain, A., Zunaid, M., & Samad, A. (2017). Newtonian and Non-Newtonian Pulsatile Flows through an Artery with Stenosis. The Journal of Engineering Research [TJER], 14(2), 191-205.
  • Samady, H., Eshtehardi, P., McDaniel, M. C., Suo, J., Dhawan, S. S., Maynard, C., ... & Giddens, D. P. (2011). Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation, 124(7), 779-788.
  • Shaaban, A. M., & Duerinckx, A. J. (2000). Wall shear stress and early atherosclerosis: a review. American Journal of Roentgenology, 174(6), 1657-1665.
  • Sharifzadeh, B., Kalbasi, R., Jahangiri, M., Toghraie, D., & Karimipour, A. (2020). Computer modeling of pulsatile blood flow in elastic artery using a software program for application in biomedical engineering. Computer Methods and Programs in Biomedicine, 192, 105442.
  • Soulis, J. V., Giannoglou, G. D., Chatzizisis, Y. S., Farmakis, T. M., Giannakoulas, G. A., Parcharidis, G. E., & Louridas, G. E. (2006). Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis. Coronary Artery Disease, 17(4), 351-358.
  • Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiurai, V. S., Mabon, R. F., & Glagov, S. (1983). Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research, 53(4), 502-514.
  • Zhao, Y., Ping, J., Yu, X., Cui, Y., Yin, J., Sun, C., ... & Tang, L. (2021). Computational fluid dynamics simulation of time-resolved blood flow in Budd-Chiari syndrome with inferior vena cava stenosis and its implication for postoperative efficacy assessment. Clinical Biomechanics, 82, 105256.
  • Zun, P., Svitenkov, A., & Hoekstra, A. (2021). Effects of local coronary blood flow dynamics on the predictions of a model of in-stent restenosis. Journal of Biomechanics, 120, 110361.
There are 28 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Mechanical Engineering
Authors

Arif Çutay 0000-0002-0057-9417

Özdeş Çermik 0000-0001-9308-4589

Ahmet Kaya 0000-0001-9197-3542

Publication Date March 3, 2025
Submission Date September 6, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2025Volume: 28 Issue: 1

Cite

APA Çutay, A., Çermik, Ö., & Kaya, A. (2025). EVALUATION OF THE VESSEL WITH DIFFERENT STENOSIS STRUCTURES USING CFD APPROACH. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 245-257.