Research Article
BibTex RIS Cite

YÜKSEK VERİMLİ SWIFT SİKLONDA GİRİŞ HIZININ ETKİSİNİN İNCELENMESİ

Year 2025, Volume: 28 Issue: 2, 583 - 591, 03.06.2025

Abstract

Bu çalışmada, yüksek verimli Swift (HE) tipi siklonda giriş hızının toplama verimi ve basınç kayıplarına olan etkileri nümerik yöntemler kullanılarak ortaya koyulmuştur. 10 – 20 m/s aralığında altı farklı giriş hız değerleri için çalışmalar yapılmıştır. Yapılan bu çalışmada daha iyi sonuçlar elde etmek için küçük elemanlar ile gridleme işlemi gerçekleştirilmiştir. Reynolds Stress Model (RSM) türbülanslı akışın çözümlenmesi için kullanılmıştır. Çözümleme her bir giriş hızı için transient olarak 5 ms’lik 1000 adım ile 10000 iterasyon ile gerçekleştirilmiştir. Partiküllerin boyut dağılımlarını belirlemek için Rosin-Rammler metodu kullanılmıştır. Giriş hızının artışı teğetsel hızı artırdığı için partiküle etki eden santrifüj kuvveti artmıştır. Buda partiküllerin siklon duvarına doğru hareket etmesine ve toplama veriminin artmasına neden olmuştur. Giriş hızının artışı ile birlikte, dönen akışın artması dolayısıyla basınç kaybının çok fazla arttığı görülmektedir. Bu değişimin üstel olarak arttığı görülür. Giriş hızının artışıyla birlikte siklon duvarlarında oluşan basınçlar aşırı derecede artmıştır.

References

  • Babaoğlu, N., Parvaz, F., Hosseini, S., & Elsayed, K. (2021). Giriş kesit şeklinin çok girişli bir gaz siklonun performansı üzerindeki etkisi. Powder Technology.
  • Barth, W. (1956). Design and Layout of the Cyclone Separator on the Basis of New Investigations. Brennstow-Wäerme-Kraft (BWK), 8(4), 1–9.
  • Brar, L. S., & Elsayed, K. (2018). Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network. Separation and Purification Technology, 207, 269–283. https://doi.org/10.1016/j.seppur.2018.06.013
  • Elsayed, K., & Lacor, C. (2011a). Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technology, 212(1), 115–133. https://doi.org/10.1016/j.powtec.2011.05.002
  • Elsayed, K., & Lacor, C. (2011b). Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Computers and Fluids, 51(1), 48–59. https://doi.org/10.1016/j.compfluid.2011.07.010
  • Elsayed, K., & Lacor, C. (2013). The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES. Computers and Fluids, 71, 224–239. https://doi.org/10.1016/j.compfluid.2012.09.027
  • Gao, Y., Zhang, M., Guo, J., & Xu, L. (2022). Impact of the oxidation of SO2 by NO2 on regional sulfate concentrations over the North China Plain. Atmospheric Pollution Research, 13(3), 101337. https://doi.org/https://doi.org/10.1016/j.apr.2022.101337
  • Gimbun, J., Chuah, T. G., Fakhru’l-Razi, A., & Choong, T. S. Y. (2005). The influence of temperature and inlet velocity on cyclone pressure drop: A CFD study. Chemical Engineering and Processing: Process Intensification, 44(1), 7–12. https://doi.org/10.1016/j.cep.2004.03.005
  • Griffiths, W. D., & Boysan, F. (1996). Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. Journal of Aerosol Science, 27(2), 281–304. https://doi.org/https://doi.org/10.1016/0021-8502(95)00549-8
  • Hoffmann, A. C., Stein, L. E., & Bradshaw, P. (2003). Gas cyclones and swirl tubes: principles, design and operation. Appl. Mech. Rev., 56(2), B28--B29.
  • Iozia, D. L., & Leith, D. (1989). Effect of cyclone dimensions on gas flow pattern and collection efficiency. Aerosol Science and Technology, 10(3), 491–500. https://doi.org/10.1080/02786828908959289
  • Jion, M. M. M. F., Jannat, J. N., Mia, M. Y., Ali, M. A., Islam, M. S., Ibrahim, S. M., Pal, S. C., Islam, A., Sarker, A., Malafaia, G., Bilal, M., & Islam, A. R. M. T. (2023). A critical review and prospect of NO2 and SO2 pollution over Asia: Hotspots, trends, and sources. Science of The Total Environment, 876, 162851. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162851
  • Lapple, C. E. (1950). Gravity and Centrifugal Separation. American Industrial Hygiene Association Quarterly, 11(1), 40–48. https://doi.org/10.1080/00968205009344283
  • Leith, D., & Mehta, D. (1973). Cyclone performance and design. Atmospheric Environment (1967), 7(5), 527–549. https://doi.org/https://doi.org/10.1016/0004-6981(73)90006-1
  • Lim, K. S., Kwon, S. B., & Lee, K. W. (2003). Characteristics of the collection efficiency for a double inlet cyclone with clean air. Journal of Aerosol Science, 34(8), 1085–1095. https://doi.org/10.1016/S0021-8502(03)00079-X
  • Raoufi, A., Shams, M., Farzaneh, M., & Ebrahimi, R. (2008). Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chemical Engineering and Processing: Process Intensification, 47(1), 128–137. https://doi.org/10.1016/j.cep.2007.08.004
  • Safikhani, H. (2016). Modeling and multi-objective Pareto optimization of new cyclone separators using CFD, ANNs and NSGA II algorithm. Advanced Powder Technology, 27(5), 2277–2284. https://doi.org/10.1016/j.apt.2016.08.017
  • Safikhani, H., Akhavan-Behabadi, M. A., Nariman-Zadeh, N., & Mahmood Abadi, M. J. (2011). Modeling and multi-objective optimization of square cyclones using CFD and neural networks. Chemical Engineering Research and Design, 89(3), 301–309. https://doi.org/10.1016/j.cherd.2010.07.004
  • Sun, X., & Yoon, J. Y. (2018). Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics. Powder Technology, 325, 347–360. https://doi.org/10.1016/j.powtec.2017.11.012
  • Venkatesh, S., Suresh Kumar, R., Sivapirakasam, S. P., Sakthivel, M., Venkatesh, D., & Yasar Arafath, S. (2020). Multi-objective optimization, experimental and CFD approach for performance analysis in square cyclone separator. Powder Technology, 371, 115–129. https://doi.org/10.1016/j.powtec.2020.05.080
  • Wasilewski, M., & Brar, L. S. (2017). Optimization of the geometry of cyclone separators used in clinker burning process: A case study. Powder Technology, 313, 293–302. https://doi.org/10.1016/j.powtec.2017.03.025
  • Wasilewski, M., Singh Brar, L., & Ligus, G. (2021). Effect of the central rod dimensions on the performance of cyclone separators - optimization study. Separation and Purification Technology, 274(May), 119020. https://doi.org/10.1016/j.seppur.2021.119020
  • Yang, H., Wang, N., Cao, Y., Meng, X., & Yao, L. (2023). Effects of helical fins on the performance of a cyclone separator: A numerical study. Advanced Powder Technology, 34(1), 103929. https://doi.org/https://doi.org/10.1016/j.apt.2022.103929
  • Yoshida, H. (2013). Effect of apex cone shape and local fluid flow control method on fine particle classification of gas-cyclone. Chemical Engineering Science, 85, 55–61. https://doi.org/https://doi.org/10.1016/j.ces.2012.01.060
  • Zhao, B., Su, Y., & Zhang, J. (2006). Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration. Chemical Engineering Research and Design, 84(12 A), 1158–1165. https://doi.org/10.1205/cherd06040

INVESTIGATION OF INLET VELOCITY EFFECT ON HIGH EFFICIENCY SWIFT CYCLONE

Year 2025, Volume: 28 Issue: 2, 583 - 591, 03.06.2025

Abstract

In this paper, study is performed in order to demonstrate the effect of the inlet velocity on collection efficiency and pressure drop by using numerical methods. Numerical simulation is accomplished for six different inlet velocity at range of 10-20 m/s. Gridding was done with small elements to obtain better results. Turbulent flow is analyzed using Reynolds Stress Model (RSM). Set appropriate time steps to model the transient processes is 1000 for 5 ms with 10000 iterations. Rosin-Ramler size distribution method was used to calculate particle mass fraction. Centrifugal force increased because that for value of inlet velocity increases, the tangential velocity enhances. Based on this situation, it can be concluded that for the particles to move towards the cyclone wall and the collection efficiency increased. It is seen that with the increase in inlet velocity, the pressure drop increases greatly due to the increase in the rotating flow. It is expressed that this change increases as exponentially. It is also observed pressure on cyclone wall markedly increased with the increase inlet velocity.

References

  • Babaoğlu, N., Parvaz, F., Hosseini, S., & Elsayed, K. (2021). Giriş kesit şeklinin çok girişli bir gaz siklonun performansı üzerindeki etkisi. Powder Technology.
  • Barth, W. (1956). Design and Layout of the Cyclone Separator on the Basis of New Investigations. Brennstow-Wäerme-Kraft (BWK), 8(4), 1–9.
  • Brar, L. S., & Elsayed, K. (2018). Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network. Separation and Purification Technology, 207, 269–283. https://doi.org/10.1016/j.seppur.2018.06.013
  • Elsayed, K., & Lacor, C. (2011a). Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technology, 212(1), 115–133. https://doi.org/10.1016/j.powtec.2011.05.002
  • Elsayed, K., & Lacor, C. (2011b). Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Computers and Fluids, 51(1), 48–59. https://doi.org/10.1016/j.compfluid.2011.07.010
  • Elsayed, K., & Lacor, C. (2013). The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES. Computers and Fluids, 71, 224–239. https://doi.org/10.1016/j.compfluid.2012.09.027
  • Gao, Y., Zhang, M., Guo, J., & Xu, L. (2022). Impact of the oxidation of SO2 by NO2 on regional sulfate concentrations over the North China Plain. Atmospheric Pollution Research, 13(3), 101337. https://doi.org/https://doi.org/10.1016/j.apr.2022.101337
  • Gimbun, J., Chuah, T. G., Fakhru’l-Razi, A., & Choong, T. S. Y. (2005). The influence of temperature and inlet velocity on cyclone pressure drop: A CFD study. Chemical Engineering and Processing: Process Intensification, 44(1), 7–12. https://doi.org/10.1016/j.cep.2004.03.005
  • Griffiths, W. D., & Boysan, F. (1996). Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. Journal of Aerosol Science, 27(2), 281–304. https://doi.org/https://doi.org/10.1016/0021-8502(95)00549-8
  • Hoffmann, A. C., Stein, L. E., & Bradshaw, P. (2003). Gas cyclones and swirl tubes: principles, design and operation. Appl. Mech. Rev., 56(2), B28--B29.
  • Iozia, D. L., & Leith, D. (1989). Effect of cyclone dimensions on gas flow pattern and collection efficiency. Aerosol Science and Technology, 10(3), 491–500. https://doi.org/10.1080/02786828908959289
  • Jion, M. M. M. F., Jannat, J. N., Mia, M. Y., Ali, M. A., Islam, M. S., Ibrahim, S. M., Pal, S. C., Islam, A., Sarker, A., Malafaia, G., Bilal, M., & Islam, A. R. M. T. (2023). A critical review and prospect of NO2 and SO2 pollution over Asia: Hotspots, trends, and sources. Science of The Total Environment, 876, 162851. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162851
  • Lapple, C. E. (1950). Gravity and Centrifugal Separation. American Industrial Hygiene Association Quarterly, 11(1), 40–48. https://doi.org/10.1080/00968205009344283
  • Leith, D., & Mehta, D. (1973). Cyclone performance and design. Atmospheric Environment (1967), 7(5), 527–549. https://doi.org/https://doi.org/10.1016/0004-6981(73)90006-1
  • Lim, K. S., Kwon, S. B., & Lee, K. W. (2003). Characteristics of the collection efficiency for a double inlet cyclone with clean air. Journal of Aerosol Science, 34(8), 1085–1095. https://doi.org/10.1016/S0021-8502(03)00079-X
  • Raoufi, A., Shams, M., Farzaneh, M., & Ebrahimi, R. (2008). Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chemical Engineering and Processing: Process Intensification, 47(1), 128–137. https://doi.org/10.1016/j.cep.2007.08.004
  • Safikhani, H. (2016). Modeling and multi-objective Pareto optimization of new cyclone separators using CFD, ANNs and NSGA II algorithm. Advanced Powder Technology, 27(5), 2277–2284. https://doi.org/10.1016/j.apt.2016.08.017
  • Safikhani, H., Akhavan-Behabadi, M. A., Nariman-Zadeh, N., & Mahmood Abadi, M. J. (2011). Modeling and multi-objective optimization of square cyclones using CFD and neural networks. Chemical Engineering Research and Design, 89(3), 301–309. https://doi.org/10.1016/j.cherd.2010.07.004
  • Sun, X., & Yoon, J. Y. (2018). Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics. Powder Technology, 325, 347–360. https://doi.org/10.1016/j.powtec.2017.11.012
  • Venkatesh, S., Suresh Kumar, R., Sivapirakasam, S. P., Sakthivel, M., Venkatesh, D., & Yasar Arafath, S. (2020). Multi-objective optimization, experimental and CFD approach for performance analysis in square cyclone separator. Powder Technology, 371, 115–129. https://doi.org/10.1016/j.powtec.2020.05.080
  • Wasilewski, M., & Brar, L. S. (2017). Optimization of the geometry of cyclone separators used in clinker burning process: A case study. Powder Technology, 313, 293–302. https://doi.org/10.1016/j.powtec.2017.03.025
  • Wasilewski, M., Singh Brar, L., & Ligus, G. (2021). Effect of the central rod dimensions on the performance of cyclone separators - optimization study. Separation and Purification Technology, 274(May), 119020. https://doi.org/10.1016/j.seppur.2021.119020
  • Yang, H., Wang, N., Cao, Y., Meng, X., & Yao, L. (2023). Effects of helical fins on the performance of a cyclone separator: A numerical study. Advanced Powder Technology, 34(1), 103929. https://doi.org/https://doi.org/10.1016/j.apt.2022.103929
  • Yoshida, H. (2013). Effect of apex cone shape and local fluid flow control method on fine particle classification of gas-cyclone. Chemical Engineering Science, 85, 55–61. https://doi.org/https://doi.org/10.1016/j.ces.2012.01.060
  • Zhao, B., Su, Y., & Zhang, J. (2006). Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration. Chemical Engineering Research and Design, 84(12 A), 1158–1165. https://doi.org/10.1205/cherd06040
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Air Pollution and Gas Cleaning
Journal Section Environmental Engineering
Authors

Nihan Babaoğlu 0000-0003-3356-9407

İbrahim Ararat 0009-0000-1626-1334

Publication Date June 3, 2025
Submission Date July 24, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2025Volume: 28 Issue: 2

Cite

APA Babaoğlu, N., & Ararat, İ. (2025). YÜKSEK VERİMLİ SWIFT SİKLONDA GİRİŞ HIZININ ETKİSİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 583-591.