Research Article
BibTex RIS Cite

ON-OFF VE DEĞİŞKEN ON KONTROLLÜ ZVS E-SINIFI REZONANS EVİRİCİ İÇİN Si-IGBT ve SiC-MOSFET’in KARŞILAŞTIRILMASI

Year 2025, Volume: 28 Issue: 2, 601 - 612, 03.06.2025

Abstract

ZVS E-sınıfı rezonans eviricide anahtar streslerinin; farklı kontrol tekniklerine, giriş gerilimine ve çıkış gücüne bağlı olarak değişmesi dayanma gerilimine karşı taşıyabilecekleri akım değeri sınırlı olan Si MOSFET’in güç anahtarı olarak kullanımını sınırlandırmaktadır. Bu sınırlandırmaya karşı Si MOSFET yerine Si IGBT ve SiC MOSFET kullanılmaktadır. Bu çalışmada on-off ve değişken on kontrollü ZVS E-sınıfı rezonans eviricilerin çalışmaları incelenmiştir. İki farklı kontrol tekniği ile kontrol edilen eviricide güç anahtarı olarak Si IGBT ve SiC MOSFET kullanılmıştır. Teorik çalışmaları doğrulamak için giriş gücü 372W olan eviriciden ve kontrol devresinden oluşan deney düzeneği kurulmuştur. Temel çalışma frekansı 24kHz olan on-off ve değişken on kontrollü E-sınıfı rezonans evirici iki farklı güç anahtarı ile ayrı ayrı test edilmiştir. Si IGBT ve SiC MOSFET'in ayrı ayrı kullanıldığı eviricide maksimum çıkış gücü sıra ile 200,77W ve 191,83W iken verim değeri sıra ile %53,93 ve %54,57’dir. On-off kontrollü eviricide minimum çıkış güç değeri 27,48W için verim %22,15 iken değişken on kontrollü eviricide minimum güç değeri 11,69W için verim %65,25’tir. Sonuç olarak on-off kontrollü eviricide azalan çıkış gücü ile evirici veriminin değişken on kontrollü eviriciye göre oldukça fazla azaldığı görülmüştür. Ayrıca her iki kontrol tekniği ile ayrı ayrı kontrol edilen eviricide güç anahtarları Si IGBT ve SiC MOSFET’in evirici verimi yönünden performanslarının birbirine oldukça yakın olduğu gözlemlenmiştir.

Supporting Institution

Bandırma Onyedi Eylül Üniversitesi

Project Number

BAP-21-1003-011

Thanks

Bu çalışma Bandırma Onyedi Eylül Üniversitesi (BANÜ) Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir (Proje Numarası: BAP-21-1003-011). Değerli destekleri için BANÜ’ye teşekkür ederim.

References

  • Albanna, A., Malburg, A., Anwar, M., Guta, A., & Tiwari, N. (2016, June). Performance comparison and device analysis Between Si IGBT and SiC MOSFET. 2016 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 1-6). https://doi.org/10.1109/ITEC.2016.7520242
  • Celentano, A., Pareschi, F., Rovatti, R., & Setti, G. (2023). A zero-transient dual-frequency control for class-E resonant DC-DC converters. IEEE Transactions on Power Electronics, 38 (2), 2105-2114. https://doi.org/10.1109/TPEL.2022.3208816
  • Chakkuchan, P., Charoenwiangnuea, P., Chudjuarjeen, S., Rattanaudompisut, A., Jaito, K., & Pichaicherd, A. (2024, March). Parallel class-E resonant inverters with a common EMI filter for domestic induction cooker. 2024 International Electrical Engineering Congress (iEECON 2024) (pp. 1-4). IEEE.
  • Corti, F., Reatti, A., Wu, Y. H., Czarkowski, D., & Musumeci, S. (2021). Zero voltage switching condition in class-E inverter for capacitive wireless power transfer applications. Energies, 14 (4), 1-21. https://doi.org/10.3390/en14040911
  • He, L., Huang, X., & Cheng, B. (2023). Robust class E2 wireless power transfer system based on parity-time symmetry. IEEE Transactions on Power Electronics, 38 (4), 4279-4288. https://doi.org/10.1109/TPEL.2022.3230852
  • Karafil, A. (2023). Thinned-out controlled IC MPPT algorithm for class E resonant inverter with PV system. Ain Shams Engineering Journal, 14 (2023), 1-9. https://doi.org/10.1016/j.asej.2022.101992
  • Khodadoost, M., Hayati, M., & Abbasi, H. (2023). Investigation of temperature variations on a class-E inverter and proposing a compensation circuit to prevent harmful effects on biomedical implants. Scientific Reports, 4017 (2023), 1-19. https://doi.org/10.1038/s41598-023-31076-y
  • Komiyama, Y., Matsuhashi, S., Zhu, W., Mishima, T., Ito, Y., Uematsu, T., Nguyen, K., & Sekiya, H. (2021). Frequency-modulation controlled load-independent class-E inverter. IEEE Access, 9 (2021), 144600-144613. https://doi.org/10.1109/ACCESS.2021.3121781
  • Li, Y., & Ruan, X. (2022). Output current limitation for on-off controlled very-high-frequency class E DC-DC converter. IEEE Transactions on Industrial Electronics, 69 (11), 11826-11831. https://doi.org/10.1109/TIE.2021.3116594
  • Mangkalajarn, S., Ekkaravarodome, C., Sukanna, S., Bilsalam, A., Jirasereeamongkul, K., & Higuchi, K. (2019, February). Comparative study of Si IGBT and SiC MOSFET in optimal operation class-E inverter for domestic induction cooker. 2019 Research, Invention, and Innovation Congress (RI2C 2019) (). IEEE.
  • Nacar, S., Öncü, S., & Bal, G. (2021). Comparison of control techniques for series resonant converter. Gazi Üniversitesi Fen Bilimleri Dergisi Part: C Tasarım ve Teknoloji, 9 (2), 283-296. https://doi.org/10.29109/gujsc.908600
  • Nacar, S., Öncü, S., & Kayfeci, M. (2022). Induction heated metal hydride tube for hydrogen storage system. Pamukkale University Journal of Engineering Sciences, 28 (5), 676-680. https://doi.org/10.5505/pajes.2021.97692
  • Niefnecker, P., Simon, M., Salich, S., & Pforr, J. (2017, November). Comparison of switching devices for a zero-current switched class E based automotive inductive charging converter system. 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe) (pp. 1-10). IEEE.
  • Oh, Y., Yeon, J., Kang, J., Galkin, I., Oh, W., & Cho, K. (2021). Sensorless control of voltage peaks in class-E single-ended resonant inverter for induction heating rice cooker. Energies, 14 (4545), 1-12. https://doi.org/10.3390/en14154545
  • Ribas, J., Quintana-Barcia, P. J., Cardesin, J., Calleja, A. J., & Corominas, E. L. (2018). LED series current regulator based on a modified class-E resonant inverter. IEEE Transactions in Industrial Electronics, 65 (12), 9488-9497. https://doi.org/10.1109/TIE.2018.2822618
  • Sarnago, H., Burdio, J. S., & Lucia, O. (2023). Dual-output extended-power-range quasi-resonant inverter for induction heating appliances. IEEE Transactions on Power Electronics, 38 (3), 3385-3397. https://doi.org/10.1109/TPEL.2022.3226497
  • Sevim, E., & Çetin, E. (2022). The performance comparison of the SiC and Si mosfets used in the 3-phase brushless DC motor drives for electric vehicles. International Journal of Automotive Science and Technology, 6 (4), 331-339. https://doi.org/10.30939/ijastech
  • Sivkov, O., Novak, M., & Novak, J. (2018, December). Comparison between Si IGBT and SiC MOSFET Inverters for AC Motor Drive. 2018 18th International Conference on Mechatronics - Mechatronika (ME), (pp. 1-5)
  • Wang, Y., Li, F., Qiu, Y., Gao, S., Guan, Y., & Xu, D. (2019). A single-state LED driver based on flyback and modified class-E resonant converters with low-voltage stress. IEEE Transactions on Industrial Electronics, 66 (11), 8463-8473. https://doi.org/10.1109/TIE.2018.2890502
  • Xu, J., Tong, Z., & Rivas-Davila, J. (2022). 1 kW MHz wideband class E power Amplifier. IEEE Open Journal of Power Electronics, 3 (2022), 84-92. https://doi.org/10.1109/OJPEL.2022.3146835
  • Yalçın, S., Göksu, T., Kesler, S., & Bingöl, O. (2020). Determination of conducted EMI in SiC based dual active bridge converter. International Journal of Applied Mathematics Electronics and Computers, 8 (4), 241-244. https://doi.org/10.18100/ijamec.801730
  • Yamamoto, A., Omori, H., Fukuda, K., Michikoshi, H., Kimura, N., Morizane, T., & Nakaoka, M. (2017, October). Optimum design of a new single-ended wireless EV charger and comparative thermal evaluation of SiC-MOSFET and Si-IGBT. 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE) (pp. 76-81). https://doi.org/10.1109/EDPE.2017.8123259
  • Zhang, L., Yuan, X., Wu, X., Shi, C., Zhang, J., & Zhang, Y. (2019). Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules. IEEE Transactions on Power Electronics, 34 (2), 1181-1196. https://doi.org/10.1109/TPEL.2018.2834345
  • Zhang, D., Lu, L., Song, W., Min, R., Tong, Q., Zhang, Q., Peng, H., & Zhou, K. (2023). Optimal duty ratio assisted PFM control for VHF isolated class E DC-DC converter. IEEE Transactions on Power Electronics, 38 (12), 15467-15480. https://doi.org/10.1109/TPEL.2023.3317910
  • Zhao, T., Wang, J., Huang, A. Q., & Agarwal, A. (2007, September). Comparisons of SiC MOSFET and Si IGBT based motor drive systems. 2007 IEEE Industry Applications Annual Meeting (pp. 331-335). https://doi.org/10.1109/07IAS.2007.51

COMPARISON OF Si-IGBT AND SiC-MOSFET FOR ON-OFF AND VARIABLE ON CONTROLLED ZVS CLASS-E RESONANT INVERTER

Year 2025, Volume: 28 Issue: 2, 601 - 612, 03.06.2025

Abstract

The variation of switch stresses in ZVS class-E resonant inverters, depending on different control techniques, input voltage, and output power, limits the use of the Si MOSFET as a power switch due to its limited current-carrying capacity against breakdown voltage. Si IGBT and SiC MOSFET are used instead of Si MOSFET to counter this limitation. In this study, the operations of on-off and variable on-controlled ZVS class-E resonant inverters are examined. Si IGBT and SiC MOSFETs are used as power switches in the inverter controlled by two different control techniques. An experimental setup consisting of an input power of 372W inverter, and a control circuit is established to verify the theoretical studies. The on-off and variable on-controlled class-E resonant inverters, operating at a basic frequency of 24kHz, are tested separately using two different power switches. In the inverter where Si IGBT and SiC MOSFET are used separately, the maximum output power is 200.77W and 191.83W, respectively, while the efficiency is 53.93% and 54.57%, respectively. In the on-off controlled inverter, the efficiency is 22.15% for a minimum output power of 27.48W, whereas, in the variable on-time controlled inverter, the efficiency is 65.25% for a minimum output power of 11.69W. As a result, it is observed that the inverter efficiency decreases significantly with decreasing output power in the on-off controlled inverter, compared to the variable on-controlled inverter. Additionally, it is observed that the performance of the power switches, Si IGBT and SiC MOSFET, in terms of inverter efficiency is very close to each other in the inverter controlled separately by both control techniques.

Project Number

BAP-21-1003-011

References

  • Albanna, A., Malburg, A., Anwar, M., Guta, A., & Tiwari, N. (2016, June). Performance comparison and device analysis Between Si IGBT and SiC MOSFET. 2016 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 1-6). https://doi.org/10.1109/ITEC.2016.7520242
  • Celentano, A., Pareschi, F., Rovatti, R., & Setti, G. (2023). A zero-transient dual-frequency control for class-E resonant DC-DC converters. IEEE Transactions on Power Electronics, 38 (2), 2105-2114. https://doi.org/10.1109/TPEL.2022.3208816
  • Chakkuchan, P., Charoenwiangnuea, P., Chudjuarjeen, S., Rattanaudompisut, A., Jaito, K., & Pichaicherd, A. (2024, March). Parallel class-E resonant inverters with a common EMI filter for domestic induction cooker. 2024 International Electrical Engineering Congress (iEECON 2024) (pp. 1-4). IEEE.
  • Corti, F., Reatti, A., Wu, Y. H., Czarkowski, D., & Musumeci, S. (2021). Zero voltage switching condition in class-E inverter for capacitive wireless power transfer applications. Energies, 14 (4), 1-21. https://doi.org/10.3390/en14040911
  • He, L., Huang, X., & Cheng, B. (2023). Robust class E2 wireless power transfer system based on parity-time symmetry. IEEE Transactions on Power Electronics, 38 (4), 4279-4288. https://doi.org/10.1109/TPEL.2022.3230852
  • Karafil, A. (2023). Thinned-out controlled IC MPPT algorithm for class E resonant inverter with PV system. Ain Shams Engineering Journal, 14 (2023), 1-9. https://doi.org/10.1016/j.asej.2022.101992
  • Khodadoost, M., Hayati, M., & Abbasi, H. (2023). Investigation of temperature variations on a class-E inverter and proposing a compensation circuit to prevent harmful effects on biomedical implants. Scientific Reports, 4017 (2023), 1-19. https://doi.org/10.1038/s41598-023-31076-y
  • Komiyama, Y., Matsuhashi, S., Zhu, W., Mishima, T., Ito, Y., Uematsu, T., Nguyen, K., & Sekiya, H. (2021). Frequency-modulation controlled load-independent class-E inverter. IEEE Access, 9 (2021), 144600-144613. https://doi.org/10.1109/ACCESS.2021.3121781
  • Li, Y., & Ruan, X. (2022). Output current limitation for on-off controlled very-high-frequency class E DC-DC converter. IEEE Transactions on Industrial Electronics, 69 (11), 11826-11831. https://doi.org/10.1109/TIE.2021.3116594
  • Mangkalajarn, S., Ekkaravarodome, C., Sukanna, S., Bilsalam, A., Jirasereeamongkul, K., & Higuchi, K. (2019, February). Comparative study of Si IGBT and SiC MOSFET in optimal operation class-E inverter for domestic induction cooker. 2019 Research, Invention, and Innovation Congress (RI2C 2019) (). IEEE.
  • Nacar, S., Öncü, S., & Bal, G. (2021). Comparison of control techniques for series resonant converter. Gazi Üniversitesi Fen Bilimleri Dergisi Part: C Tasarım ve Teknoloji, 9 (2), 283-296. https://doi.org/10.29109/gujsc.908600
  • Nacar, S., Öncü, S., & Kayfeci, M. (2022). Induction heated metal hydride tube for hydrogen storage system. Pamukkale University Journal of Engineering Sciences, 28 (5), 676-680. https://doi.org/10.5505/pajes.2021.97692
  • Niefnecker, P., Simon, M., Salich, S., & Pforr, J. (2017, November). Comparison of switching devices for a zero-current switched class E based automotive inductive charging converter system. 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe) (pp. 1-10). IEEE.
  • Oh, Y., Yeon, J., Kang, J., Galkin, I., Oh, W., & Cho, K. (2021). Sensorless control of voltage peaks in class-E single-ended resonant inverter for induction heating rice cooker. Energies, 14 (4545), 1-12. https://doi.org/10.3390/en14154545
  • Ribas, J., Quintana-Barcia, P. J., Cardesin, J., Calleja, A. J., & Corominas, E. L. (2018). LED series current regulator based on a modified class-E resonant inverter. IEEE Transactions in Industrial Electronics, 65 (12), 9488-9497. https://doi.org/10.1109/TIE.2018.2822618
  • Sarnago, H., Burdio, J. S., & Lucia, O. (2023). Dual-output extended-power-range quasi-resonant inverter for induction heating appliances. IEEE Transactions on Power Electronics, 38 (3), 3385-3397. https://doi.org/10.1109/TPEL.2022.3226497
  • Sevim, E., & Çetin, E. (2022). The performance comparison of the SiC and Si mosfets used in the 3-phase brushless DC motor drives for electric vehicles. International Journal of Automotive Science and Technology, 6 (4), 331-339. https://doi.org/10.30939/ijastech
  • Sivkov, O., Novak, M., & Novak, J. (2018, December). Comparison between Si IGBT and SiC MOSFET Inverters for AC Motor Drive. 2018 18th International Conference on Mechatronics - Mechatronika (ME), (pp. 1-5)
  • Wang, Y., Li, F., Qiu, Y., Gao, S., Guan, Y., & Xu, D. (2019). A single-state LED driver based on flyback and modified class-E resonant converters with low-voltage stress. IEEE Transactions on Industrial Electronics, 66 (11), 8463-8473. https://doi.org/10.1109/TIE.2018.2890502
  • Xu, J., Tong, Z., & Rivas-Davila, J. (2022). 1 kW MHz wideband class E power Amplifier. IEEE Open Journal of Power Electronics, 3 (2022), 84-92. https://doi.org/10.1109/OJPEL.2022.3146835
  • Yalçın, S., Göksu, T., Kesler, S., & Bingöl, O. (2020). Determination of conducted EMI in SiC based dual active bridge converter. International Journal of Applied Mathematics Electronics and Computers, 8 (4), 241-244. https://doi.org/10.18100/ijamec.801730
  • Yamamoto, A., Omori, H., Fukuda, K., Michikoshi, H., Kimura, N., Morizane, T., & Nakaoka, M. (2017, October). Optimum design of a new single-ended wireless EV charger and comparative thermal evaluation of SiC-MOSFET and Si-IGBT. 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE) (pp. 76-81). https://doi.org/10.1109/EDPE.2017.8123259
  • Zhang, L., Yuan, X., Wu, X., Shi, C., Zhang, J., & Zhang, Y. (2019). Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules. IEEE Transactions on Power Electronics, 34 (2), 1181-1196. https://doi.org/10.1109/TPEL.2018.2834345
  • Zhang, D., Lu, L., Song, W., Min, R., Tong, Q., Zhang, Q., Peng, H., & Zhou, K. (2023). Optimal duty ratio assisted PFM control for VHF isolated class E DC-DC converter. IEEE Transactions on Power Electronics, 38 (12), 15467-15480. https://doi.org/10.1109/TPEL.2023.3317910
  • Zhao, T., Wang, J., Huang, A. Q., & Agarwal, A. (2007, September). Comparisons of SiC MOSFET and Si IGBT based motor drive systems. 2007 IEEE Industry Applications Annual Meeting (pp. 331-335). https://doi.org/10.1109/07IAS.2007.51
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Circuits and Systems
Journal Section Electrical and Electronics Engineering
Authors

Salih Nacar 0000-0003-4843-9648

Project Number BAP-21-1003-011
Publication Date June 3, 2025
Submission Date July 29, 2024
Acceptance Date March 28, 2025
Published in Issue Year 2025Volume: 28 Issue: 2

Cite

APA Nacar, S. (2025). ON-OFF VE DEĞİŞKEN ON KONTROLLÜ ZVS E-SINIFI REZONANS EVİRİCİ İÇİN Si-IGBT ve SiC-MOSFET’in KARŞILAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 601-612.