Research Article
BibTex RIS Cite

STRUCTURAL ANALYSIS OF THERMALLY STABILIZED VISCOSE RAYON FIBERS AFTER CHEMICAL MODIFICATION

Year 2025, Volume: 28 Issue: 2, 823 - 834, 03.06.2025

Abstract

In this study, the structural changes that occurred during the thermal stabilization process after chemical modification of viscose rayon fibers with phosphoric acid were analyzed. Viscose rayon fibers were first treated with 4% phosphoric acid solution and then thermally stabilized at temperatures ranging from 160°C to 250°C. Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used in the characterization of the samples obtained after stabilization. The findings obtained from infrared spectroscopy showed the dehydration of hydroxyl groups and the formation of aromatic structures. In XRD analysis, it was observed that the cellulose-II crystal structure transformed into the amorphous phase with increasing temperatures and completely disappeared at 250°C. TGA thermograms showed that the modification decreased the maximum weight loss temperature and increased the char yield from 13.2% to 50%. DSC analyses showed that the endothermic peak temperature shifted from 330°C to 215°C and dehydration reactions accelerated. It was concluded that phosphoric acid increased the carbonization yield by changing the decomposition mechanism of cellulose and prepared the fibers for further carbonization processes, and it was understood that thermally stabilized viscose rayon is a suitable precursor for the production of activated carbon fiber.

References

  • Carrillo, F., Colom, X., Valldeperas, J., Evans, D., Huson, M., & Church, J. (2003). Structural Characterization and Properties of Lyocell Fibers after Fibrillation and Enzymatic Defibrillation Finishing Treatments. Textile Research Journal, 73(11), 1024–1030. https://doi.org/10.1177/004051750307301114
  • Chaudhuri, N. K., Aravindanath, S., & Betrabet, S. M. (1983). Electron Diffraction Study of Regenerated Cellulose Fibers. Textile Research Journal, 53(11), 701–705. https://doi.org/10.1177/004051758305301111
  • Colom, X., & Carrillo, F. (2002). Crystallinity Changes in Lyocell and Viscose-type Fibres by Caustic Treatment. European Polymer Journal, 38(11), 2225–2230. https://doi.org/10.1016/S0014-3057(02)00132-5
  • Dadashian, F., Yaghoobi, Z., & Wilding, M. A. (2005). Thermal Behaviour of Lyocell Fibres. Polymer Testing, 24(8), 969–977. https://doi.org/10.1016/j.polymertesting.2005.08.005
  • Demirel, T., Tunçel, K. Ş., & Karacan, I. (2024). An Evaluation of the Beneficial Effects of Polyamide 6's Thermal Stabilization by Ferric Chloride Complexation as a Novel Carbon Fiber Precursor. Fibers and Polymers, 25, 1301–1312. https://doi.org/10.1007/s12221-024-00523-6
  • Dumanlı, A. G., & Windle, A. H. (2012). Carbon Fibres from Cellulosic Precursors: A review. Journal of Materials Science, 47(10), 4236–4250. https://doi.org/10.1007/s10853-011-6081-8
  • Fang, L., & Catchmark, J. M. (2014). Structure Characterization of Native Cellulose during Dehydration and Rehydration. Cellulose, 21(6), 3951–3963. https://doi.org/10.1007/s10570-014-0435-8
  • Gupta, V. K. & Suhas. (2009). Application of Low-cost Adsorbents for Dye Removal – A review. Journal of Environmental Management, 90(8), 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017
  • Gül, A. (2025a). A Study on Structural Changes during the Thermal Stabilization Stage of Hemp Fibers Impregnated with Phosphoric Acid Before Carbonization and Activation. Fibers and Polymers, Early Access. https://doi.org/10.1007/s12221-024-00835-7
  • Gül, A. (2025b). Investigation of the Structural Transformations of Phosphoric Acid Impregnated Viscose Rayon Fibers during the Thermal Stabilization Stage before Carbonization. Journal of the Faculty of Engineering and Architecture of Gazi University, 40(2), 749–760. https://doi.org/10.17341/gazimmfd.1357056
  • Hariri, H., Tunçel, K. Ş., & Karacan, I. (2024). Structure and Properties of Thermally Stabilized and Ecologically Friendly Organic Cotton Fibers as a New Activated Carbon Fiber Precursor. Fibers and Polymers, 25(8), 2925–2933. https://doi.org/10.1007/s12221-024-00648-8
  • Hina, K., Zou, H., Qian, W., Zuo, D., & Yi, C. (2018). Preparation and Performance Comparison of Cellulose-based Activated Carbon Fibres. Cellulose, 25(1), 607–617. https://doi.org/10.1007/s10570-017-1560-y
  • Hou, Y., Sun, T., Wang, H., & Wu, D. (2008). Effect of Heating Rate on the Chemical Reaction during Stabilization of Polyacrylonitrile Fibers. Textile Research Journal, 78(9), 806–811. https://doi.org/10.1177/0040517507090500
  • Huang, J.-M., Wang, I.-J., & Wang, C.-H. (2001). Preparation and Adsorptive Properties of Cellulose-based Activated Carbon Tows from Cellulose Filaments. Journal of Polymer Research, 8(3), 201–207. https://doi.org/10.1007/s10965-006-0152-6
  • Huang, X. (2009). Fabrication and Properties of Carbon Fibers. Materials, 2(4), 2369–2403. https://doi.org/10.3390/ma2042369
  • Kandola, B. K., Horrocks, A. R., Price, D., & Coleman, G. V. (1996). Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis. Journal of Macromolecular Science, Part C: Polymer Reviews. https://doi.org/10.1080/15321799608014859
  • Puziy, A. M., Poddubnaya, O. I., Martínez-Alonso, A., Suárez-García, F., & Tascón, J. M. D. (2005). Surface Chemistry of Phosphorus-containing Carbons of Lignocellulosic Origin. Carbon, 43(14), 2857–2868. https://doi.org/10.1016/j.carbon.2005.06.014
  • Rahman, M. M., Demirel, T., Tunçel, K. Ş., & Karacan, I. (2022). The Beneficial Effect of Eco-friendly Chemical Impregnation on the Thermal Stabilization Process of Poly(hexamethylene adipamide) Multifilament. Journal of Molecular Structure, 1259, 132718. https://doi.org/10.1016/j.molstruc.2022.132718
  • Röding, T., Langer, J., Barbosa, T. M., Bouhrara, M., & Gries, T. (2022). A Review of Polyethylene-based Carbon Fiber Manufacturing. Applied Research,1(3), e202100013. https://doi.org/10.1002/appl.202100013
  • Sun, J., Wu, L., & Wang, Q. (2005). Comparison about the Structure and Properties of PAN-based Activated Carbon Hollow Fibers Pretreated with Different Compounds Containing Phosphorus. Journal of Applied Polymer Science, 96(2), 294–300. https://doi.org/10.1002/app.21385
  • Tunçel, K. Ş. (2020). Fosforik Asidin Rejenere Selüloz Esaslı Lifler Üzerine Etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 605–611. https://doi.org/10.21923/jesd.516920
  • Tunçel, K. Ş., Demirel, T., & Karacan, I. (2021). Poliakrilonitril Esaslı Karbon Lif Özelliklerini Etkileyen Faktörler Ve Alternatif Stabilizasyon Çalışmaları. In B. Nergis, S. Bardak, M. Kayar, & A. F. Mendi (Eds.), Mühendislik Alanında Araştırma ve Değerlendirmeler (1st ed., pp. 67–96). Ankara: Gece Kitaplığı.
  • Worasuwannarak, N., Hatori, S., Nakagawa, H., & Miura, K. (2003). Effect of Oxidation Pre-treatment at 220 to 270 °C on the Carbonization and Activation Behavior of Phenolic Resin Fiber. Carbon, 41(5), 933–944. https://doi.org/10.1016/S0008-6223(02)00426-8
  • Yang, M.-C., & Yu, D.-G. (1996). Influence of Oxidation Conditions on Polyacrylonitrile-Based, Activated Hollow Carbon Fibers. Textile Research Journal, 66(2), 115–121. https://doi.org/10.1177/004051759606600209
  • Zeng, F., Pan, D., & Pan, N. (2005). Choosing the Impregnants by Thermogravimetric Analysis for Preparing Rayon-Based Carbon Fibers. Journal of Inorganic and Organometallic Polymers and Materials, 15(2), 261–267. https://doi.org/10.1007/s10904-005-5543-3
  • Zhang, M., Geng, Z., & Yu, Y. (2011). Density Functional Theory (DFT) Study on the Dehydration of Cellulose. Energy & Fuels, 25(6), 2664–2670. https://doi.org/10.1021/ef101619e

KİMYASAL MODİFİKASYON SONRASI TERMAL OLARAK STABİLİZE EDİLEN VİSKOZ RAYON LİFLERİN YAPISAL ANALİZİ

Year 2025, Volume: 28 Issue: 2, 823 - 834, 03.06.2025

Abstract

Bu çalışmada, viskoz rayon liflerin fosforik asitle kimyasal modifikasyonu sonrası termal stabilizasyon sürecinde meydana gelen yapısal değişimleri analiz edilmiştir. Viskoz rayon lifleri öncelikle %4’lük fosforik asit çözeltisi ile muamele edilmiş ve ardından 160°C’den 250°C’ye kadar değişen sıcaklıklarda termal olarak stabilize edilmiştir. Stabilizasyon sonrasında elde edilen numunelerin karakterizasyonunda kızılötesi spektroskopisi (FT-IR), X-ışını kırınımı (XRD), termogravimetrik analiz (TGA) ve diferansiyel taramalı kalorimetri (DSC) teknikleri kullanılmıştır. Kızılötesi spektroskopisinden elde edilen bulgular, hidroksil grupların dehidrasyonunu ve aromatik yapıların oluşumunu göstermiştir. XRD analizinde, artan sıcaklıklarla selüloz-II kristal yapısının amorf faza dönüştüğü ve 250°C’de tamamen kaybolduğu gözlenmiştir. TGA termogramları, modifikasyonun maksimum ağırlık kaybı sıcaklığını düşürdüğünü ve kömürleşme verimini %13,2’den %50’ye yükselttiğini göstermiştir. DSC analizleri, endotermik pik sıcaklığının 330°C’den 215°C’ye kaydığını ve dehidrasyon reaksiyonlarının hızlandığını göstermiştir. Fosforik asidin, selülozun ayrışma mekanizmasını değiştirerek karbonizasyon verimini artırdığı, lifleri ileri karbonizasyon süreçlerine hazırladığı ve termal olarak stabilize edilen viskoz rayonun aktif karbon lif üretimi için uygun bir öncü (precursor) olabileceği anlaşılmıştır.

Ethical Statement

Yazar bu makalede sunulan araştırmayla ilgili herhangi bir çıkar çatışması olmadığını beyan etmektedir. Bu yazıda insan veya hayvan denekleri bulunmadığından etik onayı gerekmemektedir.

References

  • Carrillo, F., Colom, X., Valldeperas, J., Evans, D., Huson, M., & Church, J. (2003). Structural Characterization and Properties of Lyocell Fibers after Fibrillation and Enzymatic Defibrillation Finishing Treatments. Textile Research Journal, 73(11), 1024–1030. https://doi.org/10.1177/004051750307301114
  • Chaudhuri, N. K., Aravindanath, S., & Betrabet, S. M. (1983). Electron Diffraction Study of Regenerated Cellulose Fibers. Textile Research Journal, 53(11), 701–705. https://doi.org/10.1177/004051758305301111
  • Colom, X., & Carrillo, F. (2002). Crystallinity Changes in Lyocell and Viscose-type Fibres by Caustic Treatment. European Polymer Journal, 38(11), 2225–2230. https://doi.org/10.1016/S0014-3057(02)00132-5
  • Dadashian, F., Yaghoobi, Z., & Wilding, M. A. (2005). Thermal Behaviour of Lyocell Fibres. Polymer Testing, 24(8), 969–977. https://doi.org/10.1016/j.polymertesting.2005.08.005
  • Demirel, T., Tunçel, K. Ş., & Karacan, I. (2024). An Evaluation of the Beneficial Effects of Polyamide 6's Thermal Stabilization by Ferric Chloride Complexation as a Novel Carbon Fiber Precursor. Fibers and Polymers, 25, 1301–1312. https://doi.org/10.1007/s12221-024-00523-6
  • Dumanlı, A. G., & Windle, A. H. (2012). Carbon Fibres from Cellulosic Precursors: A review. Journal of Materials Science, 47(10), 4236–4250. https://doi.org/10.1007/s10853-011-6081-8
  • Fang, L., & Catchmark, J. M. (2014). Structure Characterization of Native Cellulose during Dehydration and Rehydration. Cellulose, 21(6), 3951–3963. https://doi.org/10.1007/s10570-014-0435-8
  • Gupta, V. K. & Suhas. (2009). Application of Low-cost Adsorbents for Dye Removal – A review. Journal of Environmental Management, 90(8), 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017
  • Gül, A. (2025a). A Study on Structural Changes during the Thermal Stabilization Stage of Hemp Fibers Impregnated with Phosphoric Acid Before Carbonization and Activation. Fibers and Polymers, Early Access. https://doi.org/10.1007/s12221-024-00835-7
  • Gül, A. (2025b). Investigation of the Structural Transformations of Phosphoric Acid Impregnated Viscose Rayon Fibers during the Thermal Stabilization Stage before Carbonization. Journal of the Faculty of Engineering and Architecture of Gazi University, 40(2), 749–760. https://doi.org/10.17341/gazimmfd.1357056
  • Hariri, H., Tunçel, K. Ş., & Karacan, I. (2024). Structure and Properties of Thermally Stabilized and Ecologically Friendly Organic Cotton Fibers as a New Activated Carbon Fiber Precursor. Fibers and Polymers, 25(8), 2925–2933. https://doi.org/10.1007/s12221-024-00648-8
  • Hina, K., Zou, H., Qian, W., Zuo, D., & Yi, C. (2018). Preparation and Performance Comparison of Cellulose-based Activated Carbon Fibres. Cellulose, 25(1), 607–617. https://doi.org/10.1007/s10570-017-1560-y
  • Hou, Y., Sun, T., Wang, H., & Wu, D. (2008). Effect of Heating Rate on the Chemical Reaction during Stabilization of Polyacrylonitrile Fibers. Textile Research Journal, 78(9), 806–811. https://doi.org/10.1177/0040517507090500
  • Huang, J.-M., Wang, I.-J., & Wang, C.-H. (2001). Preparation and Adsorptive Properties of Cellulose-based Activated Carbon Tows from Cellulose Filaments. Journal of Polymer Research, 8(3), 201–207. https://doi.org/10.1007/s10965-006-0152-6
  • Huang, X. (2009). Fabrication and Properties of Carbon Fibers. Materials, 2(4), 2369–2403. https://doi.org/10.3390/ma2042369
  • Kandola, B. K., Horrocks, A. R., Price, D., & Coleman, G. V. (1996). Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis. Journal of Macromolecular Science, Part C: Polymer Reviews. https://doi.org/10.1080/15321799608014859
  • Puziy, A. M., Poddubnaya, O. I., Martínez-Alonso, A., Suárez-García, F., & Tascón, J. M. D. (2005). Surface Chemistry of Phosphorus-containing Carbons of Lignocellulosic Origin. Carbon, 43(14), 2857–2868. https://doi.org/10.1016/j.carbon.2005.06.014
  • Rahman, M. M., Demirel, T., Tunçel, K. Ş., & Karacan, I. (2022). The Beneficial Effect of Eco-friendly Chemical Impregnation on the Thermal Stabilization Process of Poly(hexamethylene adipamide) Multifilament. Journal of Molecular Structure, 1259, 132718. https://doi.org/10.1016/j.molstruc.2022.132718
  • Röding, T., Langer, J., Barbosa, T. M., Bouhrara, M., & Gries, T. (2022). A Review of Polyethylene-based Carbon Fiber Manufacturing. Applied Research,1(3), e202100013. https://doi.org/10.1002/appl.202100013
  • Sun, J., Wu, L., & Wang, Q. (2005). Comparison about the Structure and Properties of PAN-based Activated Carbon Hollow Fibers Pretreated with Different Compounds Containing Phosphorus. Journal of Applied Polymer Science, 96(2), 294–300. https://doi.org/10.1002/app.21385
  • Tunçel, K. Ş. (2020). Fosforik Asidin Rejenere Selüloz Esaslı Lifler Üzerine Etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 605–611. https://doi.org/10.21923/jesd.516920
  • Tunçel, K. Ş., Demirel, T., & Karacan, I. (2021). Poliakrilonitril Esaslı Karbon Lif Özelliklerini Etkileyen Faktörler Ve Alternatif Stabilizasyon Çalışmaları. In B. Nergis, S. Bardak, M. Kayar, & A. F. Mendi (Eds.), Mühendislik Alanında Araştırma ve Değerlendirmeler (1st ed., pp. 67–96). Ankara: Gece Kitaplığı.
  • Worasuwannarak, N., Hatori, S., Nakagawa, H., & Miura, K. (2003). Effect of Oxidation Pre-treatment at 220 to 270 °C on the Carbonization and Activation Behavior of Phenolic Resin Fiber. Carbon, 41(5), 933–944. https://doi.org/10.1016/S0008-6223(02)00426-8
  • Yang, M.-C., & Yu, D.-G. (1996). Influence of Oxidation Conditions on Polyacrylonitrile-Based, Activated Hollow Carbon Fibers. Textile Research Journal, 66(2), 115–121. https://doi.org/10.1177/004051759606600209
  • Zeng, F., Pan, D., & Pan, N. (2005). Choosing the Impregnants by Thermogravimetric Analysis for Preparing Rayon-Based Carbon Fibers. Journal of Inorganic and Organometallic Polymers and Materials, 15(2), 261–267. https://doi.org/10.1007/s10904-005-5543-3
  • Zhang, M., Geng, Z., & Yu, Y. (2011). Density Functional Theory (DFT) Study on the Dehydration of Cellulose. Energy & Fuels, 25(6), 2664–2670. https://doi.org/10.1021/ef101619e
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Material Characterization, Fiber Technology, Textile Science, Textile Sciences and Engineering (Other)
Journal Section Textile Engineering
Authors

Kemal Şahin Tunçel 0000-0001-5095-6543

Publication Date June 3, 2025
Submission Date January 8, 2025
Acceptance Date February 16, 2025
Published in Issue Year 2025Volume: 28 Issue: 2

Cite

APA Tunçel, K. Ş. (2025). KİMYASAL MODİFİKASYON SONRASI TERMAL OLARAK STABİLİZE EDİLEN VİSKOZ RAYON LİFLERİN YAPISAL ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 823-834.