Research Article
BibTex RIS Cite

TURBA ÇÖZELTİSİNİN TİTANYUMUN ÇUKURLAŞMA KOROZYONU ÜZERİNDEKİ ROLÜNÜN ORTAYA ÇIKARILMASI

Year 2025, Volume: 28 Issue: 2, 897 - 906, 03.06.2025

Abstract

Ucuz olması ve lokal korozyona karşı daha az duyarlı olduğu gerekçesiyle karbon çeliğinden üretilen yeraltı boru hatları, korozyon saldırısına karşı yetersiz kalmaktadırlar. Bu sorun nedeniyle yeraltı boru hatlarının ömrü kısalır, ekonomik ve can kayıpları ortaya çıkar. Bu nedenle, yeraltı boru hattı uygulamalarında kullanılan çelik malzemelere yeni bir seçenek olabilecek malzemelere ihtiyaç duyulduğu gerçeği halen güncelliğini korumaktadır. Ayrıca, dünyada önemli bir alan kaplayan ve yeraltı boru hatlarının geçtiği turba ortamlarının korozif etkisi hakkında çalışmalar oldukça fakirdir. Bu nedenle, bu çalışmada, turba çözeltisindeki titanyum malzemenin çukurlaşma korozyonu özellikleri, üç elektrotlu elektrokimyasal hücrede potansiyostat/galvanostat cihazı kullanılarak araştırılmıştır. Araştırmalar kapsamında açık devre potansiyeli ve döngüsel potansiyodinamik kutuplaşma testleri gerçekleştirilmiştir. Bahse konu testler birbirleriyle tutarlı olarak gerçekleşmiş ve bu testler turba çözeltisinde titanyum malzemenin çukurlaşma korozyonuna karşı direnç gösterdiğini ortaya koymuştur. Bu nedenle, çukurcuk korozyonuna karşı direnç göstermesi nedeniyle turba ortamlarından geçen yeraltı boru hatlarında kullanılan çelik esaslı malzemeler yerine titanyum esaslı boruların kullanılması tavsiye edilmektedir.

References

  • Bairi, L.R Bhuyan, P., Ghosh, A., Narang, M., Mandal, S. (2024). Microbially induced corrosion issues in the underground buried crude oil and natural gas bearing pipelines: A review. Materials and Corrosion, 75(2), 197-211. https://doi.org/10.1002/maco.202313950
  • Benitez, D.A.N., Galvez, A.K.L., Sesenes, R.L. et al. (2025) A Study of the Corrosion Inhibition of Aluminum in Ethanol-Gasoline Blend Using Annona muricata Leaves Extract. J Bio Tribo Corros 11, 3. https://doi.org/10.1007/s40735-024-00923-4
  • Çek N. and Orhan, O (2025). Understanding the Corrosion Behaviour of Graphite in Peat Environment for Environmental and Sustainability Applications. Journal of Polymer and Composites, 13(01), 728-737. https://journals.stmjournals.com/jopc/article=2024/view=188605
  • Erensoy, A., Mulayim, S., Orhan, A., Çek, N., Tuna, A., Ak, N. (2022). The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations. Alexandria Engineering Journal, 61(11), 8743-8750. https://doi.org/10.1016/j.aej.2022.02.020
  • Girkin, N.T., Burgess, P.J., Cole, L., Cooper, H.V., Coronado, E.H., Davidson, S.J., Hannam, J., Harris, J., Holman, I., McCloskey, C.S., McKeown, M.M., Milner, A.M., Page, S., Smith, J., Young, D. (2023). The three-peat challenge: business as usual, responsible agriculture, and conservation and restoration as management trajectories in global peatlands. Carbon Management, 14(1), 2275578. https://doi.org/10.1080/17583004.2023.2275578
  • Gu, Y., Li, Z., Li, J., Wang, Q., Zhao, Y., Wu, C., Su, X., Peng, H. (2023). Effect of Ti addition on mechanical properties and corrosion resistance of X80 pipeline steel. International Journal of Pressure Vessels and Piping, 206, 105003. https://doi.org/10.1016/j.ijpvp.2023.105003
  • Hemkemeier, T.A., Almeida, F.C.R., Sales, A., Klemm, A.J. (2022). Corrosion monitoring by open circuit potential in steel reinforcements embedded in cementitious composites with industrial wastes. Case Studies in Construction Materials, 16, e01042. https://doi.org/10.1016/j.cscm.2022.e01042
  • Heakal, F.ET., Shehata, O.S. (2020). Insight into the Electrochemical and Semiconducting Properties of Native Oxide Films on Ti Metal and Its Ti–6Al–4V Alloy in Borate Buffer Solutions. Prot Met Phys Chem Surf 56, 333-342. https://doi.org/10.1134/S2070205120020082
  • Hosseinzadeh, S., Bahaari, M.R., Abyani, M. (2024). Reliability assessment for pipelines corroded by longitudinally aligned defects. Ocean Engineering, 310(1), 118625. https://doi.org/10.1016/j.oceaneng.2024.118625
  • Hussain, M., Zhang, T., Chaudhry, M., Jamil, I., Kausar, S., Hussain, I. (2024). Review of Prediction of Stress Corrosion Cracking in Gas Pipelines Using Machine Learning. Machines, 12(1), 42. https://doi.org/10.3390/machines12010042
  • Kakinuma, H., Muto, I., Oya, Y., Momii, T., Sugawara, Y., Hara, Y. (2021). Morphological Change and Open-circuit Potential of Single Metastable Pit on AA1050 Aluminum in NaCl Solution. J. Electrochem. Soc., 168, 021504. https://doi.org/10.1149/1945-7111/abdee9
  • Kaya, F., Solmaz, R., Geçibesler, İ.H. (2023). The use of methanol extract of Rheum Ribes (Işgın) flower as a natural and promising corrosion inhibitor for mild steel protection in 1 M HCl solution. Journal of Industrial and Engineering Chemistry, 122, 102-117. https://doi.org/10.1016/j.jiec.2023.02.013
  • Kiourtsidis, G.E., Skolianos, S.M., Pavlidou, E.G. (1999). A study on pitting behaviour of AA2024/SiCp composites using the double cycle polarization technique. Corrosion Science, 41(6), 1185-1203. https://doi.org/10.1016/S0010-938X(98)00179-6
  • Kotni, T.R., Pandey, S., Shekhar, S., Ranjan, R., Srivastava, P.S. (2024). Corrosion of different metals/alloys in soil environment: A review. Materials Today: Proceedings, 102, 203-205. https://doi.org/10.1016/j.matpr.2023.04.537
  • Liu, C., Liu, Y., Xia, Z., Wang, Z., Wu, B. (2024). Coconut coir dust extract as a novel green corrosion inhibitor for carbon steel in the chloride-contaminated concrete pore solution. Journal of Building Engineering, 82, 108194. https://doi.org/10.1016/j.jobe.2023.108194
  • Ma, Y., Zhang, H., Gao, Y., Men, Z., He, L., Cao, J. (2022). Failure analysis of a natural gas transmission X60 steel pipeline. Anti-Corrosion Methods and Materials, 69(6), 620-628. https://doi.org/10.1108/ACMM-03-2022-2618
  • May, Z., Alam, M. K., Nayan, N. A. (2022). Recent Advances in Nondestructive Method and Assessment of Corrosion Undercoating in Carbon–Steel Pipelines. Sensors, 22(17), 6654. https://doi.org/10.3390/s22176654
  • Orhan, A. and Çek, N. (2024). Investigation of the Corrosion Behavior of Titanium Against Peat Corrosion. International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications, id 71, Turkey.
  • Qin, F. and Cheng Y.F. (2021). A review on defect assessment of pipelines: Principles, numerical solutions, and applications. International Journal of Pressure Vessels and Piping, 191, 104329. https://doi.org/10.1016/j.ijpvp.2021.104329
  • Qin, P., Chen, L.Y., Zhao, C.H., Liu, Y.J., Cao, C.D., Sun, H., Zhang, L.C. (2021). Corrosion behavior and mechanism of selective laser melted Ti35Nb alloy produced using pre-alloyed and mixed powder in Hank’s solution. Corrosion Science, 189, 109609. https://doi.org/10.1016/j.ijpvp.2021.104329
  • Palaniappan, N., Cole, I.S., Damodaran, K., Kuznetsov, A., Thomas, K.R.J., Balasubramanian K. (2020). Experimental and DFT studies of porous carbon covalently functionalized by polyaniline as a corrosion inhibition barrier on nickel-based alloys in acidic media. RSC Adv., 10, 12151-12165. https://doi.org/10.1039/D0RA00593B
  • Radojković, B., Pejić, J., Marunkić, D., Simović, A., Pantović, E.S., Jegdić, B., Bajat, J. (2023). Corrosion of metal parts in the power plant. Materials and Corrosion, 74(10), 1499-1513. https://doi.org/10.1002/maco.202313919
  • Radovanović, M.B., Tasić, Ž.Z., Mihajlović, M.B.P., Simonović, A.T., Antonijević, M.M. (2019). Electrochemical and DFT studies of brass corrosion inhibition in 3% NaCl in the presence of environmentally friendly compounds. Sci Rep, 9, 16081. https://doi.org/10.1038/s41598-019-52635-2
  • Sarwar, U., Mokhtar, A.A., Muhammad, M., Wassan R.K., Soomro, A.A., Wassan, M.A., Kaka, S. (2024). Enhancing pipeline integrity: a comprehensive review of deep learning-enabled finite element analysis for stress corrosion cracking prediction. Engineering Applications of Computational Fluid Mechanics, 18(1), 2302906. https://doi.org/10.1080/19942060.2024.2302906
  • Sfikas, A.K. and Lekatou, A.G. (2020). Electrochemical Behavior of Al–Al9Co2 Alloys in Sulfuric Acid. Corrosion and Materials Degradation, 1(2), 249-272. https://doi.org/10.3390/cmd1020012
  • Shuai, Y., Wang, X.-H., Cheng, Y.F. (2020). Modeling of local buckling of corroded X80 gas pipeline under axial compression loading. Journal of Natural Gas Science and Engineering, 81, 103472. https://doi.org/10.1016/j.jngse.2020.103472
  • Singh, J. and Shahi, A.S. (2022). Microstructure and corrosion behavior of duplex stainless steel electron beam welded joint. J Mater Sci, 57, 9454-9479. https://doi.org/10.1007/s10853-022-07241-5
  • Soomro, A.A., Mokhtar, A.A., Kurnia, J.C., Lashari, N., Lu, H., Sambo, C. (2022). Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review. Engineering Failure Analysis, 131, 105810. https://doi.org/10.1016/j.engfailanal.2021.105810
  • Thurairajah, A., Saad, B., Williams, R., Fernando, V., Seid-Karbasi, M. (2022). Integrity Management Considerations for Pipes in Peat Muskeg and Organic Rich Soils. In: 14th International Pipeline Conference, Alberta, IPC2022-86987. https://doi.org/10.1115/IPC2022-86987
  • Udowo, V.M., Yan, M., Liu, F., Ikeuba, A.I. (2024). Role of Fe oxide in the underdeposit corrosion of pipeline steel in oilfield produced water containing SRB. Materials and Corrosion, 75(1), 118-129. https://doi.org/10.1002/maco.202313869
  • Wang, Y., Zhang, S., Fang, X., Liu, Y., Song, Q., Gan, T., Dong, L. (2025). Effect of metro-induced pipe-to-soil potential fluctuations on corrosion behavior of X80 steel in a simulated soil solution. Engineering Failure Analysis, 169, 109209. https://doi.org/10.1016/j.engfailanal.2024.109209
  • Wang, L., Zhao, X., Wang, X., Shang, S., Xiu, Z., Xi, Y., Jia, H., Xu, S., Liu, H., Wen, L., Xiao, X., Liu, R., & Ji, J. (2024). Current Status Review of Corrosion Resistance Applications of Titanium Alloys in the Petroleum Industry. Coatings, 14(8), 941. https://doi.org/10.3390/coatings14080941
  • Xiao, Y., Lin, B., Tang, J., Zheng, H., Wang, Y., Zhang, H., Kuang, Y., Sun, X. (2024). Effect of elastic tensile stress on the pitting corrosion mechanism and passive film of 2205 duplex stainless steel. Electrochimica Acta, 477, 143765. https://doi.org/10.1016/j.electacta.2024.143765
  • Xiong, Y., Radhakrishnan, J., Huang, S., Chua, Y., Shi, W., Ramamurty, U. (2024). Corrosion and stress corrosion cracking resistances of the 17-4 precipitation hardened martensitic stainless steel additively manufactured using binder jet printing. Acta Materialia, 281, 120417. https://doi.org/10.1016/j.actamat.2024.120417
  • Yang, Y., Xiao, C., Yang, Y., Liang, B. (2022). Research on the reliability of X70 steel gas pipelines under SRB main control factors. Materials and Corrosion, 73(5), 687-702. https://doi.org/10.1002/maco.202112790

REVEALING THE ROLE OF PEAT SOLUTION OVER THE PITTING CORROSION OF TITANIUM

Year 2025, Volume: 28 Issue: 2, 897 - 906, 03.06.2025

Abstract

Underground pipelines made of carbon steel, due to their low cost and lower sensitivity to local corrosion, are inadequate against corrosion attack. Due to this problem, the life of underground pipelines is shortened, and economic and life losses occur. Therefore, the fact that materials that can be a new alternative to steel materials used in underground pipeline applications are needed is still up to date. Also, studies on the corrosive effects of peat environments, which cover a significant area in the world and through which underground pipelines pass, are quite poor. Therefore, in this study, the pitting corrosion properties of titanium material in peat solution were investigated using a potentiostat/galvanostat device in a three-electrode electrochemical cell. Open circuit potential and cyclic potentiodynamic polarization tests were carried out within the scope of the research. The tests in question were carried out consistently with each other and these tests revealed that titanium material in peat solution showed resistance to pitting corrosion. Therefore, due to its resistance to pitting corrosion, it is recommended to use titanium-based pipes instead of steel-based materials used in underground pipelines passing through peat environments.

References

  • Bairi, L.R Bhuyan, P., Ghosh, A., Narang, M., Mandal, S. (2024). Microbially induced corrosion issues in the underground buried crude oil and natural gas bearing pipelines: A review. Materials and Corrosion, 75(2), 197-211. https://doi.org/10.1002/maco.202313950
  • Benitez, D.A.N., Galvez, A.K.L., Sesenes, R.L. et al. (2025) A Study of the Corrosion Inhibition of Aluminum in Ethanol-Gasoline Blend Using Annona muricata Leaves Extract. J Bio Tribo Corros 11, 3. https://doi.org/10.1007/s40735-024-00923-4
  • Çek N. and Orhan, O (2025). Understanding the Corrosion Behaviour of Graphite in Peat Environment for Environmental and Sustainability Applications. Journal of Polymer and Composites, 13(01), 728-737. https://journals.stmjournals.com/jopc/article=2024/view=188605
  • Erensoy, A., Mulayim, S., Orhan, A., Çek, N., Tuna, A., Ak, N. (2022). The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations. Alexandria Engineering Journal, 61(11), 8743-8750. https://doi.org/10.1016/j.aej.2022.02.020
  • Girkin, N.T., Burgess, P.J., Cole, L., Cooper, H.V., Coronado, E.H., Davidson, S.J., Hannam, J., Harris, J., Holman, I., McCloskey, C.S., McKeown, M.M., Milner, A.M., Page, S., Smith, J., Young, D. (2023). The three-peat challenge: business as usual, responsible agriculture, and conservation and restoration as management trajectories in global peatlands. Carbon Management, 14(1), 2275578. https://doi.org/10.1080/17583004.2023.2275578
  • Gu, Y., Li, Z., Li, J., Wang, Q., Zhao, Y., Wu, C., Su, X., Peng, H. (2023). Effect of Ti addition on mechanical properties and corrosion resistance of X80 pipeline steel. International Journal of Pressure Vessels and Piping, 206, 105003. https://doi.org/10.1016/j.ijpvp.2023.105003
  • Hemkemeier, T.A., Almeida, F.C.R., Sales, A., Klemm, A.J. (2022). Corrosion monitoring by open circuit potential in steel reinforcements embedded in cementitious composites with industrial wastes. Case Studies in Construction Materials, 16, e01042. https://doi.org/10.1016/j.cscm.2022.e01042
  • Heakal, F.ET., Shehata, O.S. (2020). Insight into the Electrochemical and Semiconducting Properties of Native Oxide Films on Ti Metal and Its Ti–6Al–4V Alloy in Borate Buffer Solutions. Prot Met Phys Chem Surf 56, 333-342. https://doi.org/10.1134/S2070205120020082
  • Hosseinzadeh, S., Bahaari, M.R., Abyani, M. (2024). Reliability assessment for pipelines corroded by longitudinally aligned defects. Ocean Engineering, 310(1), 118625. https://doi.org/10.1016/j.oceaneng.2024.118625
  • Hussain, M., Zhang, T., Chaudhry, M., Jamil, I., Kausar, S., Hussain, I. (2024). Review of Prediction of Stress Corrosion Cracking in Gas Pipelines Using Machine Learning. Machines, 12(1), 42. https://doi.org/10.3390/machines12010042
  • Kakinuma, H., Muto, I., Oya, Y., Momii, T., Sugawara, Y., Hara, Y. (2021). Morphological Change and Open-circuit Potential of Single Metastable Pit on AA1050 Aluminum in NaCl Solution. J. Electrochem. Soc., 168, 021504. https://doi.org/10.1149/1945-7111/abdee9
  • Kaya, F., Solmaz, R., Geçibesler, İ.H. (2023). The use of methanol extract of Rheum Ribes (Işgın) flower as a natural and promising corrosion inhibitor for mild steel protection in 1 M HCl solution. Journal of Industrial and Engineering Chemistry, 122, 102-117. https://doi.org/10.1016/j.jiec.2023.02.013
  • Kiourtsidis, G.E., Skolianos, S.M., Pavlidou, E.G. (1999). A study on pitting behaviour of AA2024/SiCp composites using the double cycle polarization technique. Corrosion Science, 41(6), 1185-1203. https://doi.org/10.1016/S0010-938X(98)00179-6
  • Kotni, T.R., Pandey, S., Shekhar, S., Ranjan, R., Srivastava, P.S. (2024). Corrosion of different metals/alloys in soil environment: A review. Materials Today: Proceedings, 102, 203-205. https://doi.org/10.1016/j.matpr.2023.04.537
  • Liu, C., Liu, Y., Xia, Z., Wang, Z., Wu, B. (2024). Coconut coir dust extract as a novel green corrosion inhibitor for carbon steel in the chloride-contaminated concrete pore solution. Journal of Building Engineering, 82, 108194. https://doi.org/10.1016/j.jobe.2023.108194
  • Ma, Y., Zhang, H., Gao, Y., Men, Z., He, L., Cao, J. (2022). Failure analysis of a natural gas transmission X60 steel pipeline. Anti-Corrosion Methods and Materials, 69(6), 620-628. https://doi.org/10.1108/ACMM-03-2022-2618
  • May, Z., Alam, M. K., Nayan, N. A. (2022). Recent Advances in Nondestructive Method and Assessment of Corrosion Undercoating in Carbon–Steel Pipelines. Sensors, 22(17), 6654. https://doi.org/10.3390/s22176654
  • Orhan, A. and Çek, N. (2024). Investigation of the Corrosion Behavior of Titanium Against Peat Corrosion. International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications, id 71, Turkey.
  • Qin, F. and Cheng Y.F. (2021). A review on defect assessment of pipelines: Principles, numerical solutions, and applications. International Journal of Pressure Vessels and Piping, 191, 104329. https://doi.org/10.1016/j.ijpvp.2021.104329
  • Qin, P., Chen, L.Y., Zhao, C.H., Liu, Y.J., Cao, C.D., Sun, H., Zhang, L.C. (2021). Corrosion behavior and mechanism of selective laser melted Ti35Nb alloy produced using pre-alloyed and mixed powder in Hank’s solution. Corrosion Science, 189, 109609. https://doi.org/10.1016/j.ijpvp.2021.104329
  • Palaniappan, N., Cole, I.S., Damodaran, K., Kuznetsov, A., Thomas, K.R.J., Balasubramanian K. (2020). Experimental and DFT studies of porous carbon covalently functionalized by polyaniline as a corrosion inhibition barrier on nickel-based alloys in acidic media. RSC Adv., 10, 12151-12165. https://doi.org/10.1039/D0RA00593B
  • Radojković, B., Pejić, J., Marunkić, D., Simović, A., Pantović, E.S., Jegdić, B., Bajat, J. (2023). Corrosion of metal parts in the power plant. Materials and Corrosion, 74(10), 1499-1513. https://doi.org/10.1002/maco.202313919
  • Radovanović, M.B., Tasić, Ž.Z., Mihajlović, M.B.P., Simonović, A.T., Antonijević, M.M. (2019). Electrochemical and DFT studies of brass corrosion inhibition in 3% NaCl in the presence of environmentally friendly compounds. Sci Rep, 9, 16081. https://doi.org/10.1038/s41598-019-52635-2
  • Sarwar, U., Mokhtar, A.A., Muhammad, M., Wassan R.K., Soomro, A.A., Wassan, M.A., Kaka, S. (2024). Enhancing pipeline integrity: a comprehensive review of deep learning-enabled finite element analysis for stress corrosion cracking prediction. Engineering Applications of Computational Fluid Mechanics, 18(1), 2302906. https://doi.org/10.1080/19942060.2024.2302906
  • Sfikas, A.K. and Lekatou, A.G. (2020). Electrochemical Behavior of Al–Al9Co2 Alloys in Sulfuric Acid. Corrosion and Materials Degradation, 1(2), 249-272. https://doi.org/10.3390/cmd1020012
  • Shuai, Y., Wang, X.-H., Cheng, Y.F. (2020). Modeling of local buckling of corroded X80 gas pipeline under axial compression loading. Journal of Natural Gas Science and Engineering, 81, 103472. https://doi.org/10.1016/j.jngse.2020.103472
  • Singh, J. and Shahi, A.S. (2022). Microstructure and corrosion behavior of duplex stainless steel electron beam welded joint. J Mater Sci, 57, 9454-9479. https://doi.org/10.1007/s10853-022-07241-5
  • Soomro, A.A., Mokhtar, A.A., Kurnia, J.C., Lashari, N., Lu, H., Sambo, C. (2022). Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review. Engineering Failure Analysis, 131, 105810. https://doi.org/10.1016/j.engfailanal.2021.105810
  • Thurairajah, A., Saad, B., Williams, R., Fernando, V., Seid-Karbasi, M. (2022). Integrity Management Considerations for Pipes in Peat Muskeg and Organic Rich Soils. In: 14th International Pipeline Conference, Alberta, IPC2022-86987. https://doi.org/10.1115/IPC2022-86987
  • Udowo, V.M., Yan, M., Liu, F., Ikeuba, A.I. (2024). Role of Fe oxide in the underdeposit corrosion of pipeline steel in oilfield produced water containing SRB. Materials and Corrosion, 75(1), 118-129. https://doi.org/10.1002/maco.202313869
  • Wang, Y., Zhang, S., Fang, X., Liu, Y., Song, Q., Gan, T., Dong, L. (2025). Effect of metro-induced pipe-to-soil potential fluctuations on corrosion behavior of X80 steel in a simulated soil solution. Engineering Failure Analysis, 169, 109209. https://doi.org/10.1016/j.engfailanal.2024.109209
  • Wang, L., Zhao, X., Wang, X., Shang, S., Xiu, Z., Xi, Y., Jia, H., Xu, S., Liu, H., Wen, L., Xiao, X., Liu, R., & Ji, J. (2024). Current Status Review of Corrosion Resistance Applications of Titanium Alloys in the Petroleum Industry. Coatings, 14(8), 941. https://doi.org/10.3390/coatings14080941
  • Xiao, Y., Lin, B., Tang, J., Zheng, H., Wang, Y., Zhang, H., Kuang, Y., Sun, X. (2024). Effect of elastic tensile stress on the pitting corrosion mechanism and passive film of 2205 duplex stainless steel. Electrochimica Acta, 477, 143765. https://doi.org/10.1016/j.electacta.2024.143765
  • Xiong, Y., Radhakrishnan, J., Huang, S., Chua, Y., Shi, W., Ramamurty, U. (2024). Corrosion and stress corrosion cracking resistances of the 17-4 precipitation hardened martensitic stainless steel additively manufactured using binder jet printing. Acta Materialia, 281, 120417. https://doi.org/10.1016/j.actamat.2024.120417
  • Yang, Y., Xiao, C., Yang, Y., Liang, B. (2022). Research on the reliability of X70 steel gas pipelines under SRB main control factors. Materials and Corrosion, 73(5), 687-702. https://doi.org/10.1002/maco.202112790
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Corrosion
Journal Section Materials Science and Engineering
Authors

Ayhan Orhan 0000-0002-7648-2566

Nurettin Çek 0000-0001-6120-9228

Publication Date June 3, 2025
Submission Date January 27, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025Volume: 28 Issue: 2

Cite

APA Orhan, A., & Çek, N. (2025). TURBA ÇÖZELTİSİNİN TİTANYUMUN ÇUKURLAŞMA KOROZYONU ÜZERİNDEKİ ROLÜNÜN ORTAYA ÇIKARILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 897-906.