Research Article
BibTex RIS Cite

FARKLI YAZDIRMA AÇILARI İLE 3D YAZICI KULLANILARAK ÜRETİLEN PLA+ NUMUNELERİNİN MEKANİK ÖZELLİKLERİ ÜZERİNE BİR ÇALIŞMA

Year 2025, Volume: 28 Issue: 2, 923 - 932, 03.06.2025

Abstract

Bu çalışmada, farklı yazdırma açıları (0°, 90°, 0°/90°, 45° ve ±45°) ile üretilen PLA+ numunelerinin mekanik özellikleri incelenmiştir. Mekanik özellikleri belirlemek için ASTM D-638 standardına uygun olarak çekme testleri gerçekleştirilmiştir. Yazdırma açısının maksimum kuvvet, uzama, tokluk, elastikiyet modülü ve nihai çekme mukavemeti gibi mekanik özellikler üzerindeki etkileri analiz edilmiştir. Sonuçlar, yazdırma açısının PLA+ numunelerinin mekanik davranışını önemli ölçüde etkilediğini göstermektedir. En yüksek maksimum kuvvet ve nihai gerilme mukavemeti 90°'de gözlenmiştir. Buna karşılık, en düşük mekanik değerler 0°'de kaydedilmiştir, bu da bu konfigürasyonda mukavemette bir düşüş olduğunu göstermektedir. ±45° tarama açısı, daha fazla süneklik ve enerji emme kapasitesine işaret eden en yüksek uzama ve tokluğu sergilemiştir. Elastisite modülü, farklı yazdırma açıları arasında nispeten küçük farklılıklar göstermiş ve en yüksek değer 90°'de kaydedilmiştir. Bu bulgular, PLA+ bileşenlerinin mekanik performansını optimize etmede yazdırma açısı seçiminin kritik rolünü vurgulamakta ve eklemeli üretim uygulamaları için değerli bilgiler sağlamaktadır.

References

  • Albadrani, M. (2023). Effects of Raster Angle on the Elasticity of 3D-Printed Polylactic Acid and Polyethylene Terephthalate Glycol. Designs, 7. https://doi.org/10.3390/designs7050112
  • Algarni, M. (2021). The Influence of Raster Angle and Moisture Content on the Mechanical Properties of PLA Parts Produced by Fused Deposition Modeling. Polymers, 13(2). doi:10.3390/polym13020237
  • Aliotta, L., Gigante, V., Coltelli, M., Cinelli, P., Lazzeri, A., & Seggiani, M. (2019). Thermo-mechanical properties of pla/short flax fiber biocomposites. Applied Sciences, 9(18), 3797. https://doi.org/10.3390/app9183797
  • Ayatollahi, M. R., Nabavi-Kivi, A., Bahrami, B., Yazid Yahya, M., & Khosravani, M. R. (2020). The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Engineering Fracture Mechanics, 237, 107225. https://doi.org/https://doi.org/10.1016/j.engfracmech.2020.107225
  • Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 1(4), 593-611. https://doi.org/10.1021/acsapm.8b00165
  • Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9(1), 4. https://doi.org/10.1186/s13036-015-0001-4
  • Çakan, B. G. (2021). Effects of raster angle on tensile and surface roughness properties of various FDM filaments. Journal of Mechanical Science and Technology, 35(8), 3347-3353. https://doi.org/10.1007/s12206-021-0708-8
  • Duda, T., & Raghavan, L. V. (2016). 3D Metal Printing Technology. IFAC-PapersOnLine, 49(29), 103-110. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.111
  • Kangwanwatthanasiri, P., Suppakarn, N., & Ruksakulpiwat, Y. (2013). Biocomposites from cassava pulp/polylactic acid/poly(butylene succinate). Advanced Materials Research, 747, 367-370. https://doi.org/10.4028/www.scientific.net/amr.747.367
  • Kessler, A., Hickel, R., & Reymus, M. (2020). 3D Printing in Dentistry—State of the Art. Operative Dentistry, 45(1), 30-40. https://doi.org/10.2341/18-229-l
  • Lalegani, M., & Mohd ariffin, M. k. a. (2020). The Effects of Combined Infill Patterns on Mechanical Properties in FDM Process. Polymers, 12, 2792. https://doi.org/10.3390/polym12122792
  • Lee, J.-Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120-133. https://doi.org/https://doi.org/10.1016/j.apmt.2017.02.004
  • Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., & Zhu, X. (2020). Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110-115. https://doi.org/https://doi.org/10.1016/j.bioactmat.2019.12.003
  • Rajpurohit, S. R., & Dave, H. K. (2019). Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. The International Journal of Advanced Manufacturing Technology, 101(5), 1525-1536. https://doi.org/10.1007/s00170-018-3047-x
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manufacturing, 35, 1286-1296. https://doi.org/https://doi.org/10.1016/j.promfg.2019.06.089
  • Vakharia, V. S., Kuentz, L., Salem, A., Halbig, M. C., Salem, J. A., & Singh, M. (2021). Additive manufacturing and characterization of metal particulate reinforced polylactic acid (pla) polymer composites. Polymers, 13(20), 3545. https://doi.org/10.3390/polym13203545
  • Verma, P., Ubaid, J., Schiffer, A., Jain, A., Martínez-Pañeda, E., & Kumar, S. (2021). Essential work of fracture assessment of acrylonitrile butadiene styrene (ABS) processed via fused filament fabrication additive manufacturing. The International Journal of Advanced Manufacturing Technology, 113(3), 771-784. https://doi.org/10.1007/s00170-020-06580-4
  • Zhang, F., Wei, M., Viswanathan, V. V., Swart, B., Shao, Y., Wu, G., & Zhou, C. (2017). 3D printing technologies for electrochemical energy storage. Nano Energy, 40, 418-431. https://doi.org/https://doi.org/10.1016/j.nanoen.2017.08.037

A STUDY ON THE MECHANICAL PROPERTIES OF PLA+ SAMPLES MANUFACTURED USING 3D PRINTING WITH DIFFERENT RASTER ANGLES

Year 2025, Volume: 28 Issue: 2, 923 - 932, 03.06.2025

Abstract

In this study, the mechanical properties of PLA+ samples produced with different raster angles (0°, 90°, 0°/90°, 45° and ±45°) were investigated. Tensile tests were performed to determine the mechanical properties according to ASTM D-638 standard. The effects of raster angle on mechanical properties such as maximum force, elongation, toughness, modulus of elasticity, and ultimate tensile strength were analyzed. The results show that the raster angle significantly affects the mechanical behavior of PLA+ specimens. The highest maximum force and ultimate tensile strength were observed at 90°. In contrast, the lowest mechanical values were recorded at 0°, indicating a decrease in strength in this configuration. The ±45° raster angle exhibited the highest elongation and toughness, indicating greater ductility and energy absorption capacity. The modulus of elasticity showed relatively small differences between the different raster angles, with the highest value recorded at 90°. These findings highlight the critical role of raster angle selection in optimizing the mechanical performance of PLA+ components and provide valuable insights for additive manufacturing applications.

References

  • Albadrani, M. (2023). Effects of Raster Angle on the Elasticity of 3D-Printed Polylactic Acid and Polyethylene Terephthalate Glycol. Designs, 7. https://doi.org/10.3390/designs7050112
  • Algarni, M. (2021). The Influence of Raster Angle and Moisture Content on the Mechanical Properties of PLA Parts Produced by Fused Deposition Modeling. Polymers, 13(2). doi:10.3390/polym13020237
  • Aliotta, L., Gigante, V., Coltelli, M., Cinelli, P., Lazzeri, A., & Seggiani, M. (2019). Thermo-mechanical properties of pla/short flax fiber biocomposites. Applied Sciences, 9(18), 3797. https://doi.org/10.3390/app9183797
  • Ayatollahi, M. R., Nabavi-Kivi, A., Bahrami, B., Yazid Yahya, M., & Khosravani, M. R. (2020). The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Engineering Fracture Mechanics, 237, 107225. https://doi.org/https://doi.org/10.1016/j.engfracmech.2020.107225
  • Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 1(4), 593-611. https://doi.org/10.1021/acsapm.8b00165
  • Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9(1), 4. https://doi.org/10.1186/s13036-015-0001-4
  • Çakan, B. G. (2021). Effects of raster angle on tensile and surface roughness properties of various FDM filaments. Journal of Mechanical Science and Technology, 35(8), 3347-3353. https://doi.org/10.1007/s12206-021-0708-8
  • Duda, T., & Raghavan, L. V. (2016). 3D Metal Printing Technology. IFAC-PapersOnLine, 49(29), 103-110. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.111
  • Kangwanwatthanasiri, P., Suppakarn, N., & Ruksakulpiwat, Y. (2013). Biocomposites from cassava pulp/polylactic acid/poly(butylene succinate). Advanced Materials Research, 747, 367-370. https://doi.org/10.4028/www.scientific.net/amr.747.367
  • Kessler, A., Hickel, R., & Reymus, M. (2020). 3D Printing in Dentistry—State of the Art. Operative Dentistry, 45(1), 30-40. https://doi.org/10.2341/18-229-l
  • Lalegani, M., & Mohd ariffin, M. k. a. (2020). The Effects of Combined Infill Patterns on Mechanical Properties in FDM Process. Polymers, 12, 2792. https://doi.org/10.3390/polym12122792
  • Lee, J.-Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120-133. https://doi.org/https://doi.org/10.1016/j.apmt.2017.02.004
  • Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., & Zhu, X. (2020). Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110-115. https://doi.org/https://doi.org/10.1016/j.bioactmat.2019.12.003
  • Rajpurohit, S. R., & Dave, H. K. (2019). Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. The International Journal of Advanced Manufacturing Technology, 101(5), 1525-1536. https://doi.org/10.1007/s00170-018-3047-x
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manufacturing, 35, 1286-1296. https://doi.org/https://doi.org/10.1016/j.promfg.2019.06.089
  • Vakharia, V. S., Kuentz, L., Salem, A., Halbig, M. C., Salem, J. A., & Singh, M. (2021). Additive manufacturing and characterization of metal particulate reinforced polylactic acid (pla) polymer composites. Polymers, 13(20), 3545. https://doi.org/10.3390/polym13203545
  • Verma, P., Ubaid, J., Schiffer, A., Jain, A., Martínez-Pañeda, E., & Kumar, S. (2021). Essential work of fracture assessment of acrylonitrile butadiene styrene (ABS) processed via fused filament fabrication additive manufacturing. The International Journal of Advanced Manufacturing Technology, 113(3), 771-784. https://doi.org/10.1007/s00170-020-06580-4
  • Zhang, F., Wei, M., Viswanathan, V. V., Swart, B., Shao, Y., Wu, G., & Zhou, C. (2017). 3D printing technologies for electrochemical energy storage. Nano Energy, 40, 418-431. https://doi.org/https://doi.org/10.1016/j.nanoen.2017.08.037
There are 18 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Mechanical Engineering (Other)
Journal Section Mechanical Engineering
Authors

Mete Han Boztepe 0000-0001-8418-1352

Publication Date June 3, 2025
Submission Date February 17, 2025
Acceptance Date February 28, 2025
Published in Issue Year 2025Volume: 28 Issue: 2

Cite

APA Boztepe, M. H. (2025). A STUDY ON THE MECHANICAL PROPERTIES OF PLA+ SAMPLES MANUFACTURED USING 3D PRINTING WITH DIFFERENT RASTER ANGLES. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 923-932.