Research Article
BibTex RIS Cite

YÜKSEK MUKAVEMETLİ BETONARME KOLONLARIN DOĞRUSAL OLMAYAN SONLU ELEMANLAR ANALİZİ

Year 2025, Volume: 28 Issue: 2, 1081 - 1091, 03.06.2025

Abstract

Betonarme etriyeli kolonların eksenel yük taşıma kapasitesi, temel olarak enkesit boyutlarına, betonun basınç dayanımına ve boyuna donatı oranına bağlıdır. Yüksek mukavemetli betonlar hem dayanım hem de durabilite bakımından önemli avantajlar sağlamaktadırlar. Halihazırda, özellikle yüksek mukavemetli betonarme kolonların davranışı tam olarak anlaşılamamış olup literatürde eksiklikler bulunmaktadır. Bu çalışmanın amacı yüksek mukavemetli betonarme kolonların eksenel basınç altındaki davranışını anlamak için sonlu elemanlar modeli geliştirerek parametrik çalışmalar yürütmektir. Bu kapsamda dikkate alınan parametreler; beton basınç dayanımı, boyuna donatı oranı ve enkesit boyutlarıdır. Ayrıca mevcut yönetmelik tahminlerinin değerlendirilmesi de gerçekleştirilmiştir. Beton basınç dayanımının 50 MPa’ dan 100 MPa’ a çıkarılması durumunda betonarme kolonun eksenel yük taşıma kapasitesinde yaklaşık olarak %69’ luk bir artış gözlenmiştir. Boyuna donatı oranının %2’den %5.6’ya çıkarılması durumda betonarme kolon eksenel yük taşıma kapasitesi 1547.8 kN’dan 1862.5 kN’a çıkarak yaklaşık olarak %20 artmıştır. Betonarme kolonlarda enkesit boyutlarının 150 mm’den 450 mm’ye çıkarılması durumunda eksenel yük taşıma kapasitesinde 1547.5 kN’ dan 12553.8 kN’ a bir artış gözlenmiştir. Son olarak, mevcut yönetmeliklerde betonarme kolonların eksenel yük taşıma kapasitesini hesaplamak üzere kullanılan formülün, kapasiteyi yaklaşık %7 daha düşük tahmin ettiği belirlenmiştir.

References

  • ACI Committee 318. (2019) Building code requirements for structural concrete and commentary. American Concrete Institute, Farmington Hills, MI.
  • ACI Committee 445 on Shear and Torsion (1998). Recent approaches to shear design of structural concrete. Journal of Structural Engineering. 124(12), 1375-1417.
  • Amirkhani, S., & Lezgy-Nazargah, M. (2022). Nonlinear finite element analysis of reinforced concrete columns: Evaluation of different modeling approaches for considering stirrup confinement effects. Structural Concrete, 23, 2820–2836. https://doi.org/10.1002/suco.202100532
  • Aslani, F., & Nejadi, S. (2012). Cyclic constitutive model for high-strength concrete confined by ultra-high-strength and normal-strength transverse reinforcements. Australian Journal of Structural Engineering. 12, 159–172. https://doi.org/10.7158/13287982.2011.11465088
  • Awati, M., & Khadiranaikar, R.B. (2012). Behavior of concentrically loaded high performance concrete tied columns. Engineering Structures, 37, 76-87. https://doi.org/10.1016/j.engstruct.2011.12.040
  • Canbay, E., Ozcebe, G., & Ersoy, U. (2006). High-strength concrete columns under eccentric load. ASCE Journal of Structural Engineering, 132, 1052–1060. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:7(1052)
  • Dirar, S., Caro, M., Sogut, K., & Quinn, A. (2024). Experimental behaviour, FE modelling and design of large-scale reinforced concrete deep beams shear-strengthened with embedded fibre reinforced polymer bars. Structures, 67, 106938. https://doi.org/10.1016/j.istruc.2024.106938
  • Dirar, S., Sogut, K., Caro, M., Rahman, R., Theofanous, M., & Faramarzi, A. (2025). Effect of shear span-to-effective depth ratio and FRP material type on the behaviour of RC T-beams strengthened in shear with embedded FRP bars. Engineering Structures, 332, 120105. https://doi.org/10.1016/j.engstruct.2025.120105
  • Eid, R., Cohen, A., Guma, R., Ifrach, E., Levi, N., & Zvi, A. (2019). High-strength concrete circular columns with TRC-TSR dual internal confinement. Buildings, 9(10), 218. https://doi.org/10.3390/buildings9100218
  • Hognestad, E., Hanson, N.W., & McHenry, D. (1955). Concrete stress distribution in ultimate stress design. ACI Journal, 27(4), 455-479. https://doi.org/10.14359/11609
  • Ibrahim, H.H., & MacGregor, J.G. (1997). Modification of the ACI rectangular stress block for high-strength concrete. ACI Structural Journal, 94, 40–48. https://doi.org/10.14359/459
  • Koksal, H.O., & Erdogan, A. (2021). Stress–strain model for high-strength concrete tied columns under concentric compression. Structures, 32, 216-227. https://doi.org/10.1016/j.istruc.2021.02.063
  • Légeron, F., & Paultre, P. (2000). Behavior of high-strength concrete columns under cyclic flexure and constant Axial Load. ACI Structural Journal, 97(4), 591–601. https://doi.org/10.14359/7425
  • Palermo, D. & Vecchio, F.J. (2007) Simulation of cyclically loaded concrete structures based on the finite-element method. Journal of Structural Engineering. 133, 728–738. https://doi.org/10.1061/(ASCE)0733 9445(2007) 133:5(728)
  • Paultre, P.; Eid, R.; Robles, H.I.; & Bouaanani, N. (2009). Seismic performance of circular high-strength concrete Columns. ACI Structural Journal, 106(4), 395–404. https://doi.org/10.14359/56605
  • Said, A. I., Hilfi, H. A., Allawi, A. A., & Wardeh, G. (2024). Structural Performance of a Hollow-Core Square Concrete Column Longitudinally Reinforced with GFRP Bars under Concentric Load. CivilEng, 5(4), 928-948. https://doi.org/10.3390/civileng5040047
  • Salah-Eldin, A., Mohamed, H. M., & Benmokrane, B. (2019). Structural performance of high-strength-concrete columns reinforced with GFRP bars and ties subjected to eccentric loads. Engineering Structures, 185, 286-300. https://doi.org/10.1016/j.engstruct.2019.01.143
  • Scott, B.D., Park, R., & Priestley, M.J.N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Journal, 79(1), 13-27. https://doi.org/10.14359/10875
  • Sogut, K. (2025). Structural behaviour of concrete deep beams reinforced with aluminium alloy bars. Applied Sciences, 15(10), 5453. https://doi.org/10.3390/app15105453
  • Sogut, K., Dirar, S., Theofanous, M., Faramarzi, A., & Nayak, A.N. (2021). Effect of transverse and longitudinal reinforcement ratios on the behaviour of RC T-beams shear strengthened with embedded FRP BARS. Composite Structures, 262, 113622. https://doi.org/10.1016/j.compstruct.2021.113622
  • Thorenfeldt, E., Tomaszewicz, A. & Jensen, J.J. (1987). Mechanical properties of high strength concrete and applications in design. In: Proceedings of the Symposium on Utilization of High Strength Concrete, Stavanger, p.p. 149–159.
  • TS 500: Requirements for design and construction of reinforced concrete structures (2014). TSE (Turkish Standards Institute), Ankara, Turkey.
  • Vecchio, F.J. (2000). Disturbed stress field model for reinforced concrete: formulation. ASCE Journal of Structural Engineering, 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  • Vecchio, F.J. & Collins M.P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(2), 219–231. https://doi.org/10.14359/10416
  • Vecchio, F.J. & Collins, M.P. (1993). Compression response of cracked reinforced concrete. ASCE Journal of Structural Engineering, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  • Wong, P.S., Vecchio, F.J. & Trommels, H. (2013). VecTor2 & FormWorks user’s manual (second edition). Toronto: University of Toronto.

NONLINEAR FINITE ELEMENT ANALYSIS OF HIGH STRENGTH REINFORCED CONCRETE COLUMNS

Year 2025, Volume: 28 Issue: 2, 1081 - 1091, 03.06.2025

Abstract

The axial load capacity of reinforced concrete columns with shear links varies depending on cross-sectional dimensions, concrete compressive strength, and longitudinal reinforcement ratio. The behaviour of reinforced concrete columns, especially high-strength ones, is not fully understood, and existing literature has research gaps related to it. The aim of this study is to understand the behaviour of high-strength reinforced concrete columns by developing a finite element model for high-strength reinforced concrete columns and conducting parametric studies. The parameters considered in this study are concrete compressive strength, longitudinal reinforcement ratio, and cross-section dimensions. Moreover, predictions of the current design code were evaluated. When the concrete compressive strength increased from 50 MPa to 100 MPa, an approximately 69% increase in the axial load-carrying capacity of the reinforced concrete column was observed. In the case of increasing the longitudinal reinforcement ratio from 2% to 5.6%, the axial load-carrying capacity of the reinforced concrete column increased by approximately 20%, from 1547.8 kN to 1862.5 kN. An increase in axial load-carrying capacity from 1547.5 kN to 12553.8 kN was observed with increasing the cross-section dimensions from 150 mm to 450 mm. Moreover, the predictions of the current design codes were evaluated, and it was found that they underestimated 7% of the axial load capacity.

References

  • ACI Committee 318. (2019) Building code requirements for structural concrete and commentary. American Concrete Institute, Farmington Hills, MI.
  • ACI Committee 445 on Shear and Torsion (1998). Recent approaches to shear design of structural concrete. Journal of Structural Engineering. 124(12), 1375-1417.
  • Amirkhani, S., & Lezgy-Nazargah, M. (2022). Nonlinear finite element analysis of reinforced concrete columns: Evaluation of different modeling approaches for considering stirrup confinement effects. Structural Concrete, 23, 2820–2836. https://doi.org/10.1002/suco.202100532
  • Aslani, F., & Nejadi, S. (2012). Cyclic constitutive model for high-strength concrete confined by ultra-high-strength and normal-strength transverse reinforcements. Australian Journal of Structural Engineering. 12, 159–172. https://doi.org/10.7158/13287982.2011.11465088
  • Awati, M., & Khadiranaikar, R.B. (2012). Behavior of concentrically loaded high performance concrete tied columns. Engineering Structures, 37, 76-87. https://doi.org/10.1016/j.engstruct.2011.12.040
  • Canbay, E., Ozcebe, G., & Ersoy, U. (2006). High-strength concrete columns under eccentric load. ASCE Journal of Structural Engineering, 132, 1052–1060. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:7(1052)
  • Dirar, S., Caro, M., Sogut, K., & Quinn, A. (2024). Experimental behaviour, FE modelling and design of large-scale reinforced concrete deep beams shear-strengthened with embedded fibre reinforced polymer bars. Structures, 67, 106938. https://doi.org/10.1016/j.istruc.2024.106938
  • Dirar, S., Sogut, K., Caro, M., Rahman, R., Theofanous, M., & Faramarzi, A. (2025). Effect of shear span-to-effective depth ratio and FRP material type on the behaviour of RC T-beams strengthened in shear with embedded FRP bars. Engineering Structures, 332, 120105. https://doi.org/10.1016/j.engstruct.2025.120105
  • Eid, R., Cohen, A., Guma, R., Ifrach, E., Levi, N., & Zvi, A. (2019). High-strength concrete circular columns with TRC-TSR dual internal confinement. Buildings, 9(10), 218. https://doi.org/10.3390/buildings9100218
  • Hognestad, E., Hanson, N.W., & McHenry, D. (1955). Concrete stress distribution in ultimate stress design. ACI Journal, 27(4), 455-479. https://doi.org/10.14359/11609
  • Ibrahim, H.H., & MacGregor, J.G. (1997). Modification of the ACI rectangular stress block for high-strength concrete. ACI Structural Journal, 94, 40–48. https://doi.org/10.14359/459
  • Koksal, H.O., & Erdogan, A. (2021). Stress–strain model for high-strength concrete tied columns under concentric compression. Structures, 32, 216-227. https://doi.org/10.1016/j.istruc.2021.02.063
  • Légeron, F., & Paultre, P. (2000). Behavior of high-strength concrete columns under cyclic flexure and constant Axial Load. ACI Structural Journal, 97(4), 591–601. https://doi.org/10.14359/7425
  • Palermo, D. & Vecchio, F.J. (2007) Simulation of cyclically loaded concrete structures based on the finite-element method. Journal of Structural Engineering. 133, 728–738. https://doi.org/10.1061/(ASCE)0733 9445(2007) 133:5(728)
  • Paultre, P.; Eid, R.; Robles, H.I.; & Bouaanani, N. (2009). Seismic performance of circular high-strength concrete Columns. ACI Structural Journal, 106(4), 395–404. https://doi.org/10.14359/56605
  • Said, A. I., Hilfi, H. A., Allawi, A. A., & Wardeh, G. (2024). Structural Performance of a Hollow-Core Square Concrete Column Longitudinally Reinforced with GFRP Bars under Concentric Load. CivilEng, 5(4), 928-948. https://doi.org/10.3390/civileng5040047
  • Salah-Eldin, A., Mohamed, H. M., & Benmokrane, B. (2019). Structural performance of high-strength-concrete columns reinforced with GFRP bars and ties subjected to eccentric loads. Engineering Structures, 185, 286-300. https://doi.org/10.1016/j.engstruct.2019.01.143
  • Scott, B.D., Park, R., & Priestley, M.J.N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Journal, 79(1), 13-27. https://doi.org/10.14359/10875
  • Sogut, K. (2025). Structural behaviour of concrete deep beams reinforced with aluminium alloy bars. Applied Sciences, 15(10), 5453. https://doi.org/10.3390/app15105453
  • Sogut, K., Dirar, S., Theofanous, M., Faramarzi, A., & Nayak, A.N. (2021). Effect of transverse and longitudinal reinforcement ratios on the behaviour of RC T-beams shear strengthened with embedded FRP BARS. Composite Structures, 262, 113622. https://doi.org/10.1016/j.compstruct.2021.113622
  • Thorenfeldt, E., Tomaszewicz, A. & Jensen, J.J. (1987). Mechanical properties of high strength concrete and applications in design. In: Proceedings of the Symposium on Utilization of High Strength Concrete, Stavanger, p.p. 149–159.
  • TS 500: Requirements for design and construction of reinforced concrete structures (2014). TSE (Turkish Standards Institute), Ankara, Turkey.
  • Vecchio, F.J. (2000). Disturbed stress field model for reinforced concrete: formulation. ASCE Journal of Structural Engineering, 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  • Vecchio, F.J. & Collins M.P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(2), 219–231. https://doi.org/10.14359/10416
  • Vecchio, F.J. & Collins, M.P. (1993). Compression response of cracked reinforced concrete. ASCE Journal of Structural Engineering, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  • Wong, P.S., Vecchio, F.J. & Trommels, H. (2013). VecTor2 & FormWorks user’s manual (second edition). Toronto: University of Toronto.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Reinforced Concrete Buildings
Journal Section Civil Engineering
Authors

Kağan Söğüt 0000-0002-0601-6420

Publication Date June 3, 2025
Submission Date April 1, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025Volume: 28 Issue: 2

Cite

APA Söğüt, K. (2025). YÜKSEK MUKAVEMETLİ BETONARME KOLONLARIN DOĞRUSAL OLMAYAN SONLU ELEMANLAR ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 1081-1091.