Research Article
BibTex RIS Cite

3B YAZICIDA POLİLAKTİKASİT VE CAM FİBER KATKILI POLİPROPİLEN MALZEMELER İLE ÜRETİLEN PARÇALARIN MEKANİK PERFORMANSININ İNCELENMESİ

Year 2025, Volume: 28 Issue: 4, 1688 - 1702, 03.12.2025

Abstract

Bu çalışmada, üç boyutlu (3B) yazıcılarda sıklıkla kullanılan Polilaktikasit (PLA) ve cam fiber katkılı Polipropilen (PP GF30) malzemelerinin mekanik özellikleri incelenmiştir. Dört farklı doluluk oranı (%20, %50, %80 ve %100) ve üç farklı dolgu deseni (gyroid, ızgara ve üçgen) kullanılarak üretilen numunelerin çekme ve eğme testleri gerçekleştirilmiştir. Sonuçlar, PLA’nın eğme direncinin PP GF30’a göre daha yüksek olduğunu; ancak düşük doluluk oranlarında PP GF30 numunelerinin çekme dayanımının PLA’dan daha iyi sonuçlar verdiğini göstermektedir. Tam dolu (%100) numunelerde PLA çekmede daha yüksek mukavemet sergilerken, PP GF30 ise özellikle %20, %50 ve %80 doluluk oranlarında üstün performans ortaya koymuştur. Her iki malzeme için de gyroid deseni, çekme ve eğme testlerinde genellikle en iyi sonuçları vermiştir. Elde edilen bulgular, malzeme seçimi ve dolgu parametrelerinin 3B baskıyla üretilen parçaların mekanik performansı üzerindeki kritik rolünü ortaya koymaktadır.

References

  • 3 Types of Plastic Used in 3D Printing—SGS PSI. (n.d.). Retrieved February 4, 2025, from https://www.polymersolutions.com/plastic-in-3d-printing/
  • Altun, S., & Sekban, B. (2023). 3b Yazıcılar İçin Cam Fiber Katkılı Kompozit Filament Üretimi Ve Mekanik Özellikleri. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 64–77. https://doi.org/10.46519/ij3dptdi.1262980
  • BASF Ultrafuse PP GF30 Siyah Filament (1.75mm—2.85mm)—Mikron3D. (n.d.). Retrieved August 2, 2025, from
  • BASF Ultrafuse PP GF30 Siyah Filament (1.75mm—2.85mm)—Mikron3D website: https://www.mikron3d.com/basf-ultrafuse-pp-gf30-siyah-filament-1-75mm-2-85mm-720-d.html
  • Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7), 1601–1607. https://doi.org/10.1016/j.compscitech.2008.01.004
  • Carneiro, O. S., Silva, A. F., & Gomes, R. (2015). Fused deposition modeling with polypropylene. Materials & Design, 83, 768–776. https://doi.org/10.1016/j.matdes.2015.06.053
  • Chawla, K. K. (2001). Glass Fibers. Encyclopedia of Materials: Science and Technology, 3541–3545. https://doi.org/10.1016/B0-08-043152-6/00630-6
  • D790 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. (2017, July). Retrieved February 4, 2025, from https://www.astm.org/d0790-17.html
  • DeStefano, V., Khan, S., & Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1, 76–87. https://doi.org/10.1016/j.engreg.2020.08.002
  • Etcheverry, M., & Barbosa, S. E. (2012). Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials, 5, 1084–1113. https://doi.org/10.3390/ma5061084
  • FibreX PP+GF30 Filament. (n.d.). Retrieved August 2, 2025, from 3DXTECH website: https://www.3dxtech.com/products/fibrex-pp-gf30-1
  • Inkinen, S., Hakkarainen, M., Albertsson, A.-C., & Södergård, A. (2011). From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules, 12(3), 523–532. https://doi.org/10.1021/bm101302t
  • Kabiri, A., Liaghat, G., Alavi, F., Saidpour, H., Hedayati, S. K., Ansari, M., & Chizari, M. (2020). Glass fiber/polypropylene composites with potential of bone fracture fixation plates: Manufacturing process and mechanical characterization. Journal of Composite Materials, 54(30), 4903–4919. https://doi.org/10.1177/0021998320940367
  • Kadhum, A. H., Al-Zubaidi, S., & Abdulkareem, S. S. (2023). Effect of the Infill Patterns on the Mechanical and Surface Characteristics of 3D Printing of PLA, PLA+ and PETG Materials. ChemEngineering 2023, Vol. 7, Page 46, 7(3), 46. https://doi.org/10.3390/CHEMENGINEERING7030046
  • Kamer, M. S., Temiz, Ş., Yaykaşlı, Dr. H., & Kaya, A. (2021). 3 Boyutlu Yazıcı İle Farklı Renklerde ve Farklı Dolgu Desenlerinde Üretilen Çekme Test Numunelerinin Mekanik Özelliklerinin İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 829–848. https://doi.org/10.17482/UUMFD.887786
  • Karakuş, S. (2023). DESIGN AND MANUFACTURING OF A TWO-STAGE REDUCTION GEARBOX WITH 3D PRINTERS. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 18–28. https://doi.org/10.46519/IJ3DPTDI.1206809
  • Krčma, M., & Paloušek, D. (2022). Comparison of the effects of multiaxis printing strategies on large-scale 3D printed surface quality, accuracy, and strength. International Journal of Advanced Manufacturing Technology, 119(11–12), 7109–7120. https://doi.org/10.1007/S00170-022-08685-4/FIGURES/20
  • Kuiper, S. (2022, November 22). 3D Printing of Continuous Glass Fibre Reinforced Polypropylene Composites. [Info:eu-repo/semantics/masterThesis]. Retrieved August 2, 2025, from https://essay.utwente.nl/93877/
  • Kyutoku, H., Maeda, N., Sakamoto, H., Nishimura, H., & Yamada, K. (2019). Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydrate Polymers, 203, 95–102. https://doi.org/10.1016/J.CARBPOL.2018.09.033
  • Lee, B. K., Yun, Y., & Park, K. (2016). PLA micro- and nano-particles. Advanced Drug Delivery Reviews, 107, 176–191. https://doi.org/10.1016/J.ADDR.2016.05.020
  • Liu, D., Sun, Z., Chaichana, T., Ducke, W., & Fan, Z. (2018). Patient-Specific 3D Printed Models of Renal Tumours Using Home-Made 3D Printer in Comparison with Commercial 3D Printer. Journal of Medical Imaging and Health Informatics, 8(2), 303–308. https://doi.org/10.1166/JMIHI.2018.2294
  • Mahato, K. K., Dutta, K., & Ray, B. C. (2020). Emerging advancement of fiber-reinforced polymer composites in structural applications. New Materials in Civil Engineering, 221–271. https://doi.org/10.1016/B978-0-12-818961-0.00006-5
  • MarketsandMarkets. (2025). Global 3D Printing Market Size, Share, Trends & Growth Analysis 2032 (No. SE 2936). Retrieved from https://www.marketsandmarkets.com/Market-Reports/3d-printing-market-1276.html
  • Moczadlo, M., Chen, Q., Cheng, X., Smith, Z. J., Caldona, E. B., & Advincula, R. C. (2023). On the 3D printing of polypropylene and post-processing optimization of thermomechanical properties. MRS Communications, 13(1), 169–176. https://doi.org/10.1557/S43579-023-00329-2/FIGURES/4
  • Molina, A., & Acosta-Sullcahuamán, J. (2025). Effect of the Process Parameters on the Mechanical Properties of 3D-Printed Specimens Fabricated by Material Extrusion 3D Printing. Engineering Proceedings, 83(1), 1. https://doi.org/10.3390/engproc2025083001
  • Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46. https://doi.org/10.1016/j.addr.2016.04.003
  • Padden, F. J., & Keith, H. D. (1959). Spherulitic Crystallization in Polypropylene. Journal of Applied Physics, 30(10), 1479–1484. https://doi.org/10.1063/1.1734985
  • Petousis, M., Michailidis, N., Papadakis, V., Mountakis, N., Argyros, A., Spiridaki, M., … Vidakis, N. (2023). The impact of the glass microparticles features on the engineering response of isotactic polypropylene in material extrusion 3D printing. Materials Today Communications, 37, 107204. https://doi.org/10.1016/j.mtcomm.2023.107204
  • PP-GF-filament. (n.d.). Retrieved August 2, 2025, from https://www.filameon.com/urun/pp-gf-filament Raquez, J.-M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10), 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
  • Russell, G. (2024, September 17). The Properties of Glass Fiber Reinforced Polypropylene Filaments Recycled from Fishing Gear. arXiv. https://doi.org/10.48550/arXiv.2409.09445
  • Şentürk, B., Çetin, K., Ürküt, S. N., Anaç, N., & Koçar, O. (2022). Jig design and manufacturing for adhesive thickness control in adhesive joints. Journal of Materials and Manufacturing, 1(2), 17–23. https://doi.org/10.5281/ZENODO.7472057
  • Sodeifian, G., Ghaseminejad, S., & Yousefi, A. A. (2019). Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results in Physics, 12, 205–222. https://doi.org/10.1016/J.RINP.2018.11.065
  • Turaka, S., Jagannati, V., Pappula, B., & Makgato, S. (2024). Impact of infill density on morphology and mechanical properties of 3D printed ABS/CF-ABS composites using design of experiments. Heliyon, 10(9), 29920. https://doi.org/10.1016/J.HELIYON.2024.E29920/ASSET/05E25AAE-584B-494E-988F-36CF7FA3EC46/MAIN.ASSETS/GR22_LRG.JPG
  • Ultimaker. (2020). Ultimaker-PLA-TDS-v5.00.
  • Ultrafuse PP GF30. (2019). Retrieved from https://forward-am.com/wp-content/uploads/2021/07/Ultrafuse_PP_GF30_TDS_EN_v2.3-2.pdf
  • Vert, M., Schwarch, G., & Coudane, J. (1995). Present and Future of PLA Polymers. Journal of Macromolecular Science, Part A, 32(4), 787–796. https://doi.org/10.1080/1060132950801028

INVESTIGATION OF MECHANICAL PERFORMANCE OF PARTS PRODUCED WITH POLYLACTICACID AND GLASS FIBER REINFORCED POLYPROPYLENE MATERIALS IN 3D PRINTER

Year 2025, Volume: 28 Issue: 4, 1688 - 1702, 03.12.2025

Abstract

In this study, the mechanical properties of Polylactic Acid (PLA) and glass fiber-reinforced Polypropylene (PP GF30)—both commonly used materials in three-dimensional (3D) printing—were investigated. Test specimens were produced with four different infill densities (20%, 50%, 80%, and 100%) and three distinct infill patterns (gyroid, grid, and triangular). Tensile and flexural tests were performed on all specimens. The results indicate that although PLA exhibits higher flexural strength than PP GF30, the latter outperforms PLA in tensile strength at lower infill densities. While fully solid (%100) PLA specimens showed superior tensile strength, PP GF30 delivered notable performance especially at 20%, 50%, and 80% infill densities. Among all patterns tested, the gyroid infill pattern generally yielded the best mechanical properties for both materials. Overall, the findings highlight the critical influence of material selection and infill parameters on the mechanical performance of 3D-printed parts.

References

  • 3 Types of Plastic Used in 3D Printing—SGS PSI. (n.d.). Retrieved February 4, 2025, from https://www.polymersolutions.com/plastic-in-3d-printing/
  • Altun, S., & Sekban, B. (2023). 3b Yazıcılar İçin Cam Fiber Katkılı Kompozit Filament Üretimi Ve Mekanik Özellikleri. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 64–77. https://doi.org/10.46519/ij3dptdi.1262980
  • BASF Ultrafuse PP GF30 Siyah Filament (1.75mm—2.85mm)—Mikron3D. (n.d.). Retrieved August 2, 2025, from
  • BASF Ultrafuse PP GF30 Siyah Filament (1.75mm—2.85mm)—Mikron3D website: https://www.mikron3d.com/basf-ultrafuse-pp-gf30-siyah-filament-1-75mm-2-85mm-720-d.html
  • Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7), 1601–1607. https://doi.org/10.1016/j.compscitech.2008.01.004
  • Carneiro, O. S., Silva, A. F., & Gomes, R. (2015). Fused deposition modeling with polypropylene. Materials & Design, 83, 768–776. https://doi.org/10.1016/j.matdes.2015.06.053
  • Chawla, K. K. (2001). Glass Fibers. Encyclopedia of Materials: Science and Technology, 3541–3545. https://doi.org/10.1016/B0-08-043152-6/00630-6
  • D790 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. (2017, July). Retrieved February 4, 2025, from https://www.astm.org/d0790-17.html
  • DeStefano, V., Khan, S., & Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1, 76–87. https://doi.org/10.1016/j.engreg.2020.08.002
  • Etcheverry, M., & Barbosa, S. E. (2012). Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials, 5, 1084–1113. https://doi.org/10.3390/ma5061084
  • FibreX PP+GF30 Filament. (n.d.). Retrieved August 2, 2025, from 3DXTECH website: https://www.3dxtech.com/products/fibrex-pp-gf30-1
  • Inkinen, S., Hakkarainen, M., Albertsson, A.-C., & Södergård, A. (2011). From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules, 12(3), 523–532. https://doi.org/10.1021/bm101302t
  • Kabiri, A., Liaghat, G., Alavi, F., Saidpour, H., Hedayati, S. K., Ansari, M., & Chizari, M. (2020). Glass fiber/polypropylene composites with potential of bone fracture fixation plates: Manufacturing process and mechanical characterization. Journal of Composite Materials, 54(30), 4903–4919. https://doi.org/10.1177/0021998320940367
  • Kadhum, A. H., Al-Zubaidi, S., & Abdulkareem, S. S. (2023). Effect of the Infill Patterns on the Mechanical and Surface Characteristics of 3D Printing of PLA, PLA+ and PETG Materials. ChemEngineering 2023, Vol. 7, Page 46, 7(3), 46. https://doi.org/10.3390/CHEMENGINEERING7030046
  • Kamer, M. S., Temiz, Ş., Yaykaşlı, Dr. H., & Kaya, A. (2021). 3 Boyutlu Yazıcı İle Farklı Renklerde ve Farklı Dolgu Desenlerinde Üretilen Çekme Test Numunelerinin Mekanik Özelliklerinin İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 829–848. https://doi.org/10.17482/UUMFD.887786
  • Karakuş, S. (2023). DESIGN AND MANUFACTURING OF A TWO-STAGE REDUCTION GEARBOX WITH 3D PRINTERS. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 18–28. https://doi.org/10.46519/IJ3DPTDI.1206809
  • Krčma, M., & Paloušek, D. (2022). Comparison of the effects of multiaxis printing strategies on large-scale 3D printed surface quality, accuracy, and strength. International Journal of Advanced Manufacturing Technology, 119(11–12), 7109–7120. https://doi.org/10.1007/S00170-022-08685-4/FIGURES/20
  • Kuiper, S. (2022, November 22). 3D Printing of Continuous Glass Fibre Reinforced Polypropylene Composites. [Info:eu-repo/semantics/masterThesis]. Retrieved August 2, 2025, from https://essay.utwente.nl/93877/
  • Kyutoku, H., Maeda, N., Sakamoto, H., Nishimura, H., & Yamada, K. (2019). Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydrate Polymers, 203, 95–102. https://doi.org/10.1016/J.CARBPOL.2018.09.033
  • Lee, B. K., Yun, Y., & Park, K. (2016). PLA micro- and nano-particles. Advanced Drug Delivery Reviews, 107, 176–191. https://doi.org/10.1016/J.ADDR.2016.05.020
  • Liu, D., Sun, Z., Chaichana, T., Ducke, W., & Fan, Z. (2018). Patient-Specific 3D Printed Models of Renal Tumours Using Home-Made 3D Printer in Comparison with Commercial 3D Printer. Journal of Medical Imaging and Health Informatics, 8(2), 303–308. https://doi.org/10.1166/JMIHI.2018.2294
  • Mahato, K. K., Dutta, K., & Ray, B. C. (2020). Emerging advancement of fiber-reinforced polymer composites in structural applications. New Materials in Civil Engineering, 221–271. https://doi.org/10.1016/B978-0-12-818961-0.00006-5
  • MarketsandMarkets. (2025). Global 3D Printing Market Size, Share, Trends & Growth Analysis 2032 (No. SE 2936). Retrieved from https://www.marketsandmarkets.com/Market-Reports/3d-printing-market-1276.html
  • Moczadlo, M., Chen, Q., Cheng, X., Smith, Z. J., Caldona, E. B., & Advincula, R. C. (2023). On the 3D printing of polypropylene and post-processing optimization of thermomechanical properties. MRS Communications, 13(1), 169–176. https://doi.org/10.1557/S43579-023-00329-2/FIGURES/4
  • Molina, A., & Acosta-Sullcahuamán, J. (2025). Effect of the Process Parameters on the Mechanical Properties of 3D-Printed Specimens Fabricated by Material Extrusion 3D Printing. Engineering Proceedings, 83(1), 1. https://doi.org/10.3390/engproc2025083001
  • Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46. https://doi.org/10.1016/j.addr.2016.04.003
  • Padden, F. J., & Keith, H. D. (1959). Spherulitic Crystallization in Polypropylene. Journal of Applied Physics, 30(10), 1479–1484. https://doi.org/10.1063/1.1734985
  • Petousis, M., Michailidis, N., Papadakis, V., Mountakis, N., Argyros, A., Spiridaki, M., … Vidakis, N. (2023). The impact of the glass microparticles features on the engineering response of isotactic polypropylene in material extrusion 3D printing. Materials Today Communications, 37, 107204. https://doi.org/10.1016/j.mtcomm.2023.107204
  • PP-GF-filament. (n.d.). Retrieved August 2, 2025, from https://www.filameon.com/urun/pp-gf-filament Raquez, J.-M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10), 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
  • Russell, G. (2024, September 17). The Properties of Glass Fiber Reinforced Polypropylene Filaments Recycled from Fishing Gear. arXiv. https://doi.org/10.48550/arXiv.2409.09445
  • Şentürk, B., Çetin, K., Ürküt, S. N., Anaç, N., & Koçar, O. (2022). Jig design and manufacturing for adhesive thickness control in adhesive joints. Journal of Materials and Manufacturing, 1(2), 17–23. https://doi.org/10.5281/ZENODO.7472057
  • Sodeifian, G., Ghaseminejad, S., & Yousefi, A. A. (2019). Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results in Physics, 12, 205–222. https://doi.org/10.1016/J.RINP.2018.11.065
  • Turaka, S., Jagannati, V., Pappula, B., & Makgato, S. (2024). Impact of infill density on morphology and mechanical properties of 3D printed ABS/CF-ABS composites using design of experiments. Heliyon, 10(9), 29920. https://doi.org/10.1016/J.HELIYON.2024.E29920/ASSET/05E25AAE-584B-494E-988F-36CF7FA3EC46/MAIN.ASSETS/GR22_LRG.JPG
  • Ultimaker. (2020). Ultimaker-PLA-TDS-v5.00.
  • Ultrafuse PP GF30. (2019). Retrieved from https://forward-am.com/wp-content/uploads/2021/07/Ultrafuse_PP_GF30_TDS_EN_v2.3-2.pdf
  • Vert, M., Schwarch, G., & Coudane, J. (1995). Present and Future of PLA Polymers. Journal of Macromolecular Science, Part A, 32(4), 787–796. https://doi.org/10.1080/1060132950801028
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies, Material Design and Behaviors
Journal Section Research Article
Authors

Ahmet Serdar Güldibi 0000-0001-7021-060X

Oğuz Koçar 0000-0002-1928-4301

Nergizhan Anaç 0000-0001-6738-9741

Furkan Parmaksız 0000-0001-7002-9157

Publication Date December 3, 2025
Submission Date March 5, 2025
Acceptance Date August 25, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Güldibi, A. S., Koçar, O., Anaç, N., Parmaksız, F. (2025). 3B YAZICIDA POLİLAKTİKASİT VE CAM FİBER KATKILI POLİPROPİLEN MALZEMELER İLE ÜRETİLEN PARÇALARIN MEKANİK PERFORMANSININ İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1688-1702.