Research Article
BibTex RIS Cite

KATKISIZ VE DEMİR KATKILI TiO2 NANO TANECİKLERİNİN SOL-JEL YÖNTEMİ İLE HAZIRLANMASI: SENTEZ KOŞULLARI VE ASİT SEÇİMİNİN ETKİSİ

Year 2025, Volume: 28 Issue: 4, 1712 - 1721, 03.12.2025

Abstract

Katkısız TiO2 nano tanecikleri, sentez süreci asetik asit (TiO2-A) veya asetik asit ve hidroklorik asit ikili asit sistemi (TiO2-S) ile kontrol edilen bir sol-jel yöntemi kullanılarak hazırlandı. Katkılandırma işleminde ıslak aşılma yöntemi kullanılarak, asetik asit (Fe-TiO2-A) ve asetik asit/hidroklorik asit (Fe-TiO2-S) içerikli demir katkılı TiO2 (Fe-TiO2) nano tanecikleri hazırlanmıştır. Bu fotokatalizörler, FTIR, XRD, SEM, BET, XPS ve UV-DRS analizleri ile karakterize edildi. TiO2-S’nin yüzey alanı (50 m2/g), TiO2-A nano taneciklerine (25 m2/g) kıyasla neredeyse iki katına çıktı. TiO2-A ve Fe-TiO2-A örnekleri anataz kristal fazı içerirken, TiO2-S ve Fe-TiO2-S nano tanecikleri ise anataz ve rutil fazlarına sahip olduğu bulundu. Katkısız TiO2 ve Fe-TiO2 nano tanecikleri varlığında 4-nitrofenolün (4-NP) fotokatalitik degradasyonu incelendi ve Fe-TiO2 nano taneciklerinin daha yüksek bir fotokatalitik aktivite gösterdiği belirlendi. Sentez yöntemindeki farklılıkların ve asit seçiminin kristal yapı ve yüzey alanı ve dolayısıyla fotokatalitik aktiviteyi etkilediği belirlendi. Fe-TiO2-S nano taneciklerinin en yüksek fotokatalitik performansı (%63) gösterdiği belirlenmiştir.

References

  • Ahmad, M. M., Mushtaq, S., Al Qahtani, H. S., Sedky, A., & Alam, M. W. (2021). Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction. Crystals, 11(12), 1456. https://www.mdpi.com/2073-4352/11/12/1456
  • Behnajady, M. A., Eskandarloo, H., Modirshahla, N., & Shokri, M. (2011). Sol-Gel Low-temperature Synthesis of Stable Anatase-type TiO2 Nanoparticles Under Different Conditions and its Photocatalytic Activity. Photochemistry and Photobiology, 87(5), 1002-1008. https://doi.org/https://doi.org/10.1111/j.1751-1097.2011.00954.x
  • Bergamonti, L., Alfieri, I., Lorenzi, A., Montenero, A., Predieri, G., Di Maggio, R., Girardi, F., Lazzarini, L., & Lottici, P. P. (2015). Characterization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments. Journal of Sol-Gel Science and Technology, 73(1), 91-102. https://doi.org/10.1007/s10971-014-3498-y
  • Bessekhouad, Y., Robert, D., & Weber, J. V. (2003). Preparation of TiO2 nanoparticles by Sol-Gel route. International Journal of Photoenergy, 5(3), 496128. https://doi.org/https://doi.org/10.1155/S1110662X03000278
  • Birben Nazmiye, C., Uyguner-Demirel Ceyda, S., Sen-Kavurmaci, S., Gürkan Yelda, Y., Türkten, N., Kılıç, M., Çınar, Z., & Bekbolet, M. (2016). Photocatalytic Performance of Anion Doped TiO2 on the Degradation of Complex Organic Matrix. In Journal of Advanced Oxidation Technologies (Vol. 19, pp. 199).
  • Birben, N. C., Uyguner-Demirel, C. S., Kavurmaci, S. S., Gürkan, Y. Y., Turkten, N., Cinar, Z., & Bekbolet, M. (2017). Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catalysis Today, 281, 78-84. https://doi.org/10.1016/j.cattod.2016.06.020
  • Birben, N. C., Uyguner-Demirel, C. S., Sen-Kavurmaci, S., Gurkan, Y. Y., Turkten, N., Cinar, Z., & Bekbolet, M. (2015). Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catalysis Today, 240, Part A, 125-131. https://doi.org/http://dx.doi.org/10.1016/j.cattod.2014.04.020
  • Dolat, D., Mozia, S., Ohtani, B., & Morawski, A. W. (2013). Nitrogen, iron-single modified (N-TiO2, Fe-TiO2) and co-modified (Fe,N-TiO2) rutile titanium dioxide as visible-light active photocatalysts. Chemical Engineering Journal, 225, 358-364. https://doi.org/https://doi.org/10.1016/j.cej.2013.03.047
  • Gurkan, Y., Kasapbasi, E., Turkten, N., & Cinar, Z. (2017). Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2. Molecules, 22(3), 414. http://www.mdpi.com/1420-3049/22/3/414
  • Gurkan, Y. Y., Turkten, N., Hatipoglu, A., & Cinar, Z. (2012). Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chemical Engineering Journal, 184, 113-124. https://doi.org/http://dx.doi.org/10.1016/j.cej.2012.01.011
  • Hung, W.-C., Chen, Y.-C., Chu, H., & Tseng, T.-K. (2008). Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Applied Surface Science, 255(5, Part 1), 2205-2213. https://doi.org/https://doi.org/10.1016/j.apsusc.2008.07.079
  • Kang, M. (2003). Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. Journal of Molecular Catalysis A: Chemical, 197(1), 173-183. https://doi.org/https://doi.org/10.1016/S1381-1169(02)00586-1
  • Kignelman, G., & Thielemans, W. (2021a). Meta-analysis of TiO2 nanoparticle synthesis strategies to assess the impact of key reaction parameters on their crystallinity. Journal of Materials Science, 56(10), 5975-5994. https://doi.org/10.1007/s10853-020-05607-1
  • Kignelman, G., & Thielemans, W. (2021b). Synergistic effects of acetic acid and nitric acid in water-based sol–gel synthesis of crystalline TiO2 nanoparticles at 25 °C. Journal of Materials Science, 56(30), 16877-16886. https://doi.org/10.1007/s10853-021-06372-5
  • Leyva-Porras, C., Toxqui-Teran, A., Vega-Becerra, O., Miki-Yoshida, M., Rojas-Villalobos, M., García-Guaderrama, M., & Aguilar-Martínez, J. A. (2015). Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. Journal of Alloys and Compounds, 647, 627-636. https://doi.org/https://doi.org/10.1016/j.jallcom.2015.06.041
  • Loan, T. T., Huong, V. H., Huyen, N. T., Van Quyet, L., Bang, N. A., & Long, N. N. (2021). Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content. Optical Materials, 111, 110651. https://doi.org/https://doi.org/10.1016/j.optmat.2020.110651
  • Mahshid, S., Askari, M., Sasani Ghamsari, M., Afshar, N., & Lahuti, S. (2009). Mixed-phase TiO2 nanoparticles preparation using sol–gel method. Journal of Alloys and Compounds, 478(1), 586-589. https://doi.org/https://doi.org/10.1016/j.jallcom.2008.11.094
  • Marami, M. B., Farahmandjou, M., & Khoshnevisan, B. (2018). Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals. Journal of Electronic Materials, 47(7), 3741-3748. https://doi.org/10.1007/s11664-018-6234-5
  • Matias, M. L., Pimentel, A., Reis-Machado, A. S., Rodrigues, J., Deuermeier, J., Fortunato, E., Martins, R., & Nunes, D. (2022). Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification. Nanomaterials, 12(6), 1005. https://www.mdpi.com/2079-4991/12/6/1005
  • Meng, H., Wang, B., Liu, S., Jiang, R., & Long, H. (2013). Hydrothermal preparation, characterization and photocatalytic activity of TiO2/Fe–TiO2 composite catalysts. Ceramics International, 39(5), 5785-5793. https://doi.org/https://doi.org/10.1016/j.ceramint.2012.12.098
  • Moradi, V., Ahmed, F., Jun, M. B. G., Blackburn, A., & Herring, R. A. (2019). Acid-treated Fe-doped TiO2 as a high performance photocatalyst used for degradation of phenol under visible light irradiation. Journal of Environmental Sciences, 83, 183-194. https://doi.org/https://doi.org/10.1016/j.jes.2019.04.002
  • Muñiz-Serrato, O., & Serrato-Rodríguez, J. (2014). Nanostructuring anatase through the addition of acetic acid by the sol–gel low temperature aqueous processing. Ceramics International, 40(6), 8631-8635. https://doi.org/https://doi.org/10.1016/j.ceramint.2014.01.080
  • Nachit, W., Ait Ahsaine, H., Ramzi, Z., Touhtouh, S., Goncharova, I., & Benkhouja, K. (2022). Photocatalytic activity of anatase-brookite TiO2 nanoparticles synthesized by sol gel method at low temperature. Optical Materials, 129, 112256. https://doi.org/https://doi.org/10.1016/j.optmat.2022.112256
  • Neren Ökte, A., & Akalın, Ş. (2010). Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity. Reaction Kinetics, Mechanisms and Catalysis, 100(1), 55-70. https://doi.org/10.1007/s11144-010-0168-0
  • Ökte, A. N., Tuncel, D., Pekcan, A. H., & Özden, T. (2014). Characteristics of iron-loaded TiO-supported montmorillonite catalysts: β-Naphthol degradation under UV-A irradiation. Journal of Chemical Technology & Biotechnology, 89(8), 1155-1167. https://doi.org/https://doi.org/10.1002/jctb.4393
  • Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
  • Turkten, N., & Cinar, Z. (2017). Photocatalytic decolorization of azo dyes on TiO2: Prediction of mechanism via conceptual DFT. Catalysis Today, 287, 169-175. https://doi.org/https://doi.org/10.1016/j.cattod.2017.01.019
  • Turkten, N., Karatas, B., Karatas, Y., Cinar, Z., & Bekbolet, M. (2023). A facile synthesis of bio-inspired hierarchical microstructure TiO2: Characterization and photocatalytic activity. Environmental Progress & Sustainable Energy, 42(3), e14054. https://doi.org/https://doi.org/10.1002/ep.14054
  • Wang, H., Li, X., Zhao, X., Li, C., Song, X., Zhang, P., Huo, P., & Li, X. (2022). A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2), 178-214. https://doi.org/https://doi.org/10.1016/S1872-2067(21)63910-4
  • Wang, S., Lian, J. S., Zheng, W. T., & Jiang, Q. (2012). Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol–gel technique. Applied Surface Science, 263, 260-265. https://doi.org/https://doi.org/10.1016/j.apsusc.2012.09.040
  • Wantala, K., Laokiat, L., Khemthong, P., Grisdanurak, N., & Fukaya, K. (2010). Calcination temperature effect on solvothermal Fe–TiO2 and its performance under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 41(5), 612-616. https://doi.org/https://doi.org/10.1016/j.jtice.2010.01.008
  • Wen, L., Liu, B., Zhao, X., Nakata, K., Murakami, T., & Fujishima, A. (2012). Synthesis, Characterization, and Photocatalysis of Fe-Doped TiO2: A Combined Experimental and Theoretical Study. International Journal of Photoenergy, 2012(1), 368750. https://doi.org/https://doi.org/10.1155/2012/368750
  • Wu, J. C. S., Tseng, I. H., & Chang, W.-C. (2001). Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process. Journal of Nanoparticle Research, 3(2), 113-118. https://doi.org/10.1023/A:1017553125829
  • Yalçın, Y., Kılıç, M., & Çınar, Z. (2010a). Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 99(3-4), 469-477. https://doi.org/10.1016/j.apcatb.2010.05.013
  • Yalçın, Y., Kılıç, M., & Çınar, Z. (2010b). The Role of Non-Metal Doping in TiO2 Photocatalysis. Journal of Advanced Oxidation Technologies, 13(3), 281-296. http://www.ingentaconnect.com/content/stn/jaots/2010/00000013/00000003/art00007

PREPARATION AND CHARACTERIZATION OF UNDOPED AND IRON-DOPED TiO2 NANOPARTICLES VIA SOL-GEL METHOD: EFFECTS OF SYNTHESIS CONDITIONS AND CHOICE OF ACID TYPE

Year 2025, Volume: 28 Issue: 4, 1712 - 1721, 03.12.2025

Abstract

Undoped TiO2 nanoparticles were synthesized using a sol-gel method, controlling the synthesis process with acetic acid (TiO2-A) or the presence of both acetic and hydrochloric acid (TiO2-S). The doping procedure employed a wet-impregnation method to prepare iron-doped TiO2 (Fe-TiO2) nanoparticles, specifically those treated with acetic acid (Fe-TiO2-A) and a dual system of acetic acid/hydrochloric acid (Fe-TiO2-S). These photocatalysts were characterized by FTIR, XRD, SEM, BET, XPS, and UV-DRS analysis. The surface area of TiO2-S (50 m2/g) was almost doubled compared to TiO2-A nanoparticles (25 m2/g). TiO2-A and Fe-TiO2-A nanoparticles resulted in only a single anatase crystallite phase, while TiO2-S and Fe-TiO2-S nanoparticles exhibited a mixture of anatase and rutile phases. The photodegradation of 4-nitrophenol (4-NP) was evaluated using undoped TiO2 and Fe-TiO2 nanoparticles, confirming that Fe-TiO2 nanoparticles performed higher photocatalytic activity. Changes in the synthesis method and choice of acid influenced the crystalline structure and surface area properties, thereby affecting photocatalytic activity. The highest photocatalytic performance was achieved by Fe-TiO2-S nanoparticles, reaching 63% efficiency

References

  • Ahmad, M. M., Mushtaq, S., Al Qahtani, H. S., Sedky, A., & Alam, M. W. (2021). Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction. Crystals, 11(12), 1456. https://www.mdpi.com/2073-4352/11/12/1456
  • Behnajady, M. A., Eskandarloo, H., Modirshahla, N., & Shokri, M. (2011). Sol-Gel Low-temperature Synthesis of Stable Anatase-type TiO2 Nanoparticles Under Different Conditions and its Photocatalytic Activity. Photochemistry and Photobiology, 87(5), 1002-1008. https://doi.org/https://doi.org/10.1111/j.1751-1097.2011.00954.x
  • Bergamonti, L., Alfieri, I., Lorenzi, A., Montenero, A., Predieri, G., Di Maggio, R., Girardi, F., Lazzarini, L., & Lottici, P. P. (2015). Characterization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments. Journal of Sol-Gel Science and Technology, 73(1), 91-102. https://doi.org/10.1007/s10971-014-3498-y
  • Bessekhouad, Y., Robert, D., & Weber, J. V. (2003). Preparation of TiO2 nanoparticles by Sol-Gel route. International Journal of Photoenergy, 5(3), 496128. https://doi.org/https://doi.org/10.1155/S1110662X03000278
  • Birben Nazmiye, C., Uyguner-Demirel Ceyda, S., Sen-Kavurmaci, S., Gürkan Yelda, Y., Türkten, N., Kılıç, M., Çınar, Z., & Bekbolet, M. (2016). Photocatalytic Performance of Anion Doped TiO2 on the Degradation of Complex Organic Matrix. In Journal of Advanced Oxidation Technologies (Vol. 19, pp. 199).
  • Birben, N. C., Uyguner-Demirel, C. S., Kavurmaci, S. S., Gürkan, Y. Y., Turkten, N., Cinar, Z., & Bekbolet, M. (2017). Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catalysis Today, 281, 78-84. https://doi.org/10.1016/j.cattod.2016.06.020
  • Birben, N. C., Uyguner-Demirel, C. S., Sen-Kavurmaci, S., Gurkan, Y. Y., Turkten, N., Cinar, Z., & Bekbolet, M. (2015). Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catalysis Today, 240, Part A, 125-131. https://doi.org/http://dx.doi.org/10.1016/j.cattod.2014.04.020
  • Dolat, D., Mozia, S., Ohtani, B., & Morawski, A. W. (2013). Nitrogen, iron-single modified (N-TiO2, Fe-TiO2) and co-modified (Fe,N-TiO2) rutile titanium dioxide as visible-light active photocatalysts. Chemical Engineering Journal, 225, 358-364. https://doi.org/https://doi.org/10.1016/j.cej.2013.03.047
  • Gurkan, Y., Kasapbasi, E., Turkten, N., & Cinar, Z. (2017). Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2. Molecules, 22(3), 414. http://www.mdpi.com/1420-3049/22/3/414
  • Gurkan, Y. Y., Turkten, N., Hatipoglu, A., & Cinar, Z. (2012). Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chemical Engineering Journal, 184, 113-124. https://doi.org/http://dx.doi.org/10.1016/j.cej.2012.01.011
  • Hung, W.-C., Chen, Y.-C., Chu, H., & Tseng, T.-K. (2008). Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Applied Surface Science, 255(5, Part 1), 2205-2213. https://doi.org/https://doi.org/10.1016/j.apsusc.2008.07.079
  • Kang, M. (2003). Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. Journal of Molecular Catalysis A: Chemical, 197(1), 173-183. https://doi.org/https://doi.org/10.1016/S1381-1169(02)00586-1
  • Kignelman, G., & Thielemans, W. (2021a). Meta-analysis of TiO2 nanoparticle synthesis strategies to assess the impact of key reaction parameters on their crystallinity. Journal of Materials Science, 56(10), 5975-5994. https://doi.org/10.1007/s10853-020-05607-1
  • Kignelman, G., & Thielemans, W. (2021b). Synergistic effects of acetic acid and nitric acid in water-based sol–gel synthesis of crystalline TiO2 nanoparticles at 25 °C. Journal of Materials Science, 56(30), 16877-16886. https://doi.org/10.1007/s10853-021-06372-5
  • Leyva-Porras, C., Toxqui-Teran, A., Vega-Becerra, O., Miki-Yoshida, M., Rojas-Villalobos, M., García-Guaderrama, M., & Aguilar-Martínez, J. A. (2015). Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. Journal of Alloys and Compounds, 647, 627-636. https://doi.org/https://doi.org/10.1016/j.jallcom.2015.06.041
  • Loan, T. T., Huong, V. H., Huyen, N. T., Van Quyet, L., Bang, N. A., & Long, N. N. (2021). Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content. Optical Materials, 111, 110651. https://doi.org/https://doi.org/10.1016/j.optmat.2020.110651
  • Mahshid, S., Askari, M., Sasani Ghamsari, M., Afshar, N., & Lahuti, S. (2009). Mixed-phase TiO2 nanoparticles preparation using sol–gel method. Journal of Alloys and Compounds, 478(1), 586-589. https://doi.org/https://doi.org/10.1016/j.jallcom.2008.11.094
  • Marami, M. B., Farahmandjou, M., & Khoshnevisan, B. (2018). Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals. Journal of Electronic Materials, 47(7), 3741-3748. https://doi.org/10.1007/s11664-018-6234-5
  • Matias, M. L., Pimentel, A., Reis-Machado, A. S., Rodrigues, J., Deuermeier, J., Fortunato, E., Martins, R., & Nunes, D. (2022). Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification. Nanomaterials, 12(6), 1005. https://www.mdpi.com/2079-4991/12/6/1005
  • Meng, H., Wang, B., Liu, S., Jiang, R., & Long, H. (2013). Hydrothermal preparation, characterization and photocatalytic activity of TiO2/Fe–TiO2 composite catalysts. Ceramics International, 39(5), 5785-5793. https://doi.org/https://doi.org/10.1016/j.ceramint.2012.12.098
  • Moradi, V., Ahmed, F., Jun, M. B. G., Blackburn, A., & Herring, R. A. (2019). Acid-treated Fe-doped TiO2 as a high performance photocatalyst used for degradation of phenol under visible light irradiation. Journal of Environmental Sciences, 83, 183-194. https://doi.org/https://doi.org/10.1016/j.jes.2019.04.002
  • Muñiz-Serrato, O., & Serrato-Rodríguez, J. (2014). Nanostructuring anatase through the addition of acetic acid by the sol–gel low temperature aqueous processing. Ceramics International, 40(6), 8631-8635. https://doi.org/https://doi.org/10.1016/j.ceramint.2014.01.080
  • Nachit, W., Ait Ahsaine, H., Ramzi, Z., Touhtouh, S., Goncharova, I., & Benkhouja, K. (2022). Photocatalytic activity of anatase-brookite TiO2 nanoparticles synthesized by sol gel method at low temperature. Optical Materials, 129, 112256. https://doi.org/https://doi.org/10.1016/j.optmat.2022.112256
  • Neren Ökte, A., & Akalın, Ş. (2010). Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity. Reaction Kinetics, Mechanisms and Catalysis, 100(1), 55-70. https://doi.org/10.1007/s11144-010-0168-0
  • Ökte, A. N., Tuncel, D., Pekcan, A. H., & Özden, T. (2014). Characteristics of iron-loaded TiO-supported montmorillonite catalysts: β-Naphthol degradation under UV-A irradiation. Journal of Chemical Technology & Biotechnology, 89(8), 1155-1167. https://doi.org/https://doi.org/10.1002/jctb.4393
  • Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.
  • Turkten, N., & Cinar, Z. (2017). Photocatalytic decolorization of azo dyes on TiO2: Prediction of mechanism via conceptual DFT. Catalysis Today, 287, 169-175. https://doi.org/https://doi.org/10.1016/j.cattod.2017.01.019
  • Turkten, N., Karatas, B., Karatas, Y., Cinar, Z., & Bekbolet, M. (2023). A facile synthesis of bio-inspired hierarchical microstructure TiO2: Characterization and photocatalytic activity. Environmental Progress & Sustainable Energy, 42(3), e14054. https://doi.org/https://doi.org/10.1002/ep.14054
  • Wang, H., Li, X., Zhao, X., Li, C., Song, X., Zhang, P., Huo, P., & Li, X. (2022). A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2), 178-214. https://doi.org/https://doi.org/10.1016/S1872-2067(21)63910-4
  • Wang, S., Lian, J. S., Zheng, W. T., & Jiang, Q. (2012). Photocatalytic property of Fe doped anatase and rutile TiO2 nanocrystal particles prepared by sol–gel technique. Applied Surface Science, 263, 260-265. https://doi.org/https://doi.org/10.1016/j.apsusc.2012.09.040
  • Wantala, K., Laokiat, L., Khemthong, P., Grisdanurak, N., & Fukaya, K. (2010). Calcination temperature effect on solvothermal Fe–TiO2 and its performance under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 41(5), 612-616. https://doi.org/https://doi.org/10.1016/j.jtice.2010.01.008
  • Wen, L., Liu, B., Zhao, X., Nakata, K., Murakami, T., & Fujishima, A. (2012). Synthesis, Characterization, and Photocatalysis of Fe-Doped TiO2: A Combined Experimental and Theoretical Study. International Journal of Photoenergy, 2012(1), 368750. https://doi.org/https://doi.org/10.1155/2012/368750
  • Wu, J. C. S., Tseng, I. H., & Chang, W.-C. (2001). Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process. Journal of Nanoparticle Research, 3(2), 113-118. https://doi.org/10.1023/A:1017553125829
  • Yalçın, Y., Kılıç, M., & Çınar, Z. (2010a). Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 99(3-4), 469-477. https://doi.org/10.1016/j.apcatb.2010.05.013
  • Yalçın, Y., Kılıç, M., & Çınar, Z. (2010b). The Role of Non-Metal Doping in TiO2 Photocatalysis. Journal of Advanced Oxidation Technologies, 13(3), 281-296. http://www.ingentaconnect.com/content/stn/jaots/2010/00000013/00000003/art00007
There are 35 citations in total.

Details

Primary Language English
Subjects Environmental Pollution and Prevention, Environmental Engineering (Other)
Journal Section Research Article
Authors

Nazlı Türkten 0000-0001-9343-3697

Yunus Karataş 0000-0002-3826-463X

Zekiye Cinar 0009-0008-0377-6126

Publication Date December 3, 2025
Submission Date April 9, 2025
Acceptance Date May 12, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Türkten, N., Karataş, Y., & Cinar, Z. (2025). PREPARATION AND CHARACTERIZATION OF UNDOPED AND IRON-DOPED TiO2 NANOPARTICLES VIA SOL-GEL METHOD: EFFECTS OF SYNTHESIS CONDITIONS AND CHOICE OF ACID TYPE. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1712-1721.