Research Article
BibTex RIS Cite

ŞEBEKEYE BAĞLI RÜZGAR-GÜNEŞ-HİDRO-PİL HİBRİT ENERJİ SİSTEMİNİN OPTİMAL BOYUTLANDIRILMASI VE TEKNO-EKONOMİK ANALİZİ

Year 2025, Volume: 28 Issue: 4, 1732 - 1747, 03.12.2025

Abstract

Hibrit mikro şebeke sistemleri, yenilenebilir enerji kaynaklarını kullanarak fosil yakıt bağımlılığını azaltan sürdürülebilir ve düşük emisyonlu bir alternatif olarak öne çıkmaktadır. Literatürdeki çalışmaların büyük bölümü güneş ve rüzgâr odaklı hibrit sistemlere yönelirken, bu çalışmada Kırıkkale’de 1.000 hanelik bir yerleşimin elektrik ihtiyacını karşılamak amacıyla rüzgâr, güneş ve hidroelektrik kaynakları birlikte hibrit yapıya entegre edilmiştir. Ayrıca sisteme şebeke bağlantısı ve batarya depolama birimleri eklenerek daha kapsamlı bir modelleme gerçekleştirilmiştir. Bu doğrultuda sistemin teknik ve ekonomik uygulanabilirliğini incelemek için HOMER Pro yazılımı kullanılmış, farklı senaryolar altında hibrit sistemin performansı değerlendirilmiş ve çok amaçlı bir optimizasyon yapılmıştır. Optimizasyonun temel amacı, yük talebini güvenilir şekilde karşılamak, yenilenebilir enerji kullanımını en üst düzeye çıkarmak ve toplam sistem maliyetini en aza indirmektir. Güneş ve rüzgâr verileri NASA veri tabanından, hidrolojik veriler ise DSİ ölçümlerinden alınmıştır. Yapılan analizler sonucunda en uygun senaryo; 3,47 milyon $ Net Bugünkü Değer, 0,0252 $/kWh Dengelenmiş Enerji Maliyeti, %91,5 yenilenebilir enerji kullanımı ve 8,60 yıl geri ödeme süresi ile elde edilmiştir. Ayrıca sistemin yıllık CO₂ emisyonlarını 3.585.533 kg azalttığı belirlenmiştir. Bu sonuçlar, Kırıkkale’de yenilenebilir temelli hibrit mikro şebekelerin teknik ve ekonomik açıdan uygulanabilir olduğunu göstermektedir.

References

  • Adak, S., Cangi, H. and Yılmaz, A. S. (2019). Mathematical modeling and simulation of the photovoltaic system’s output power depend on temperature and irradiance. International Journal of Engineering Research and Development, 11(1), 316–327. https://doi.org/10.29137/umagd.456988
  • Afif, R., Ayed, Y. and Maaitah, O. N. (2023). Feasibility and optimal sizing analysis of hybrid renewable energy systems: A case study of Al-Karak, Jordan. Renewable Energy, 204, 229–249. https://doi.org/10.1016/j.renene.2022.12.109
  • Bilendo, F., Meyer, A., Badihi, H., Lu, N., Cambron, P. and Jiang, B. (2023). Applications and modeling techniques of wind turbine power curve for wind farms: A review. Energies, 16(1), 180. https://doi.org/10.3390/en16010180
  • British Petroleum, BP, (2023). BP Energy Outlook 2023 edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf
  • Coğrafyaharita, (2025). http://cografyaharita.com/turkiye_mulki_idare_haritalari.html
  • Çetinbaş, İ., Tamyürek, B. and Demirtaş, M. (2019). Design, analysis and optimization of a hybrid microgrid system using HOMER software: Eskişehir Osmangazi University example. International Journal of Renewable Energy Development, 8(1), 65–79.
  • Energy Institute, (2024). Statistical review of world energy. https://www.energyinst.org/statistical-review
  • EPIAS, Yekdem (2024). https://www.epias.com.tr/tum-duyurular/piyasa-duyurulari/elektrik/kayit-ve-uzlastirma/01-07-2021-tarihinden-31-12-2030-tarihine-kadar-isle tmeye-girecek-yek-belgeli-yenilenebilir-enerji-kaynaklarina-dayali-elektrik-ure tim-tesisleri-icin-uygulanacak-fiyatlar-hk-11.
  • Hermann, D. T., Donatien, N., Armel, T. K. F. and Rene, T. (2022). Techno-economic and environmental feasibility study with demand side management of photovoltaic/wind/hydroelectricity/battery/diesel: A case study in Sub-Saharan Africa. Energy Conversion and Management, 258, 115494. https://doi.org/10.1016/j.enconman.2022.115494
  • Hoang, A. T., Nižetić, S., Olcer, A. I., Ong, H. C., Chen, W., Chong, C. T., Thomas, S., Bandh, S. A., Nguyen, X. P. (2021). Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges and policy implications. Energy Policy, 156, 112322. https://doi.org/10.1016/j.enpol.2021.112322
  • HOMER, 2024. https://www.homerenergy.com/
  • Gupta, J., Nijhawan, P. and Ganguli, S. (2022). Optimal sizing of different configurations of photovoltaic, fuel cell, and biomass-based hybrid energy system. Environmental Science and Pollution Research, 29, 17425–17440. https://doi.org/10.1007/s11356-021-17080-7
  • Güven, A. F. and Yörükeren, N. (2022). Energy management and optimization of a hybrid energy system by particle swarm optimization algorithm–genetic algorithm and gray wolf optimizer technique: A case study for Yalova University. The Black Sea Journal of Sciences, 12(2), 853–879. https://doi.org/10.31466/kfbd.1169643
  • International Energy Agency (IEA), (2024). World energy outlook 2024. https://www.iea.org/reports/world-energy-outlook-2024
  • International Renewable Energy Agency (IRENA), (2023). World energy transitions outlook 2023:1.5°C Pathway. https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023
  • Kamal, Md. M., Ashraf, I. and Fernandez, E. (2023). Optimal sizing of standalone rural microgrid for sustainable electrification with renewable energy resources. Sustainable Cities and Society, 88, 104298. https://doi.org/10.1016/j.scs.2022.104298
  • Kaunda, C. S., Kimambo, C. Z. and Nielsen, T. K. (2012). Potential of small-scale hydropower for electricity generation in Sub-Saharan Africa. ISRN Renewable Energy, 2012, 132606. https://doi.org/10.5402/2012/132606
  • Kılıç, M. Y. and Adalı, S. (2022). Hybrid renewable energy system in providing electricity need: Supermarket example. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 5(1), 224–235. https://doi.org/10.47495/okufbed.998900
  • Mahmoud, F. S., Diab, A. A. Z., Ali, Z. M., El-Sayed, A. H. M., Alquthami, A., Ramadan, H. A. (2022). Optimal sizing of smart hybrid renewable energy system using different optimization algorithms. Energy Reports, 8, 4935–4956. https://doi.org/10.1016/j.egyr.2022.03.197
  • NASA, Nasapower, https://power.larc.nasa.gov/data-access-viewer/.
  • Naseh, M. R. and Behdani, E. (2021). Feasibility study for size optimization of a geothermal/PV/wind/diesel hybrid power plant using the harmony search algorithm. International Journal of Sustainable Energy, 40(6), 584–601. https://doi.org/10.1080/14786451.2020.1835907
  • Ngouleu, C. A. W., Kohole, Y. W., Cyrille, V. F. and Tchuen, G. (2023). Techno-economic analysis and optimal sizing of battery-based and hydrogen-based standalone photovoltaic/wind hybrid systems for rural electrification. Energy Conversion and Management, 280, 116794. https://doi.org/10.1016/j.enconman.2023.116794
  • Öztürk, E. T. and Kabalcı, E. (2024). Microgrid design with hybrid systems: Nevşehir Hacı Bektaş Veli University example. NEVU Journal of Engineering and Architecture, 2(1), 25–35.
  • Paish, O. (2002). Small hydropower: Technology and current status. Renewable and Sustainable Energy Reviews, 6, 537–556. https://doi.org/10.1016/S1364-0321(02)00006-0
  • Rashid, M. U., Ullah, I., Mehran, M., Baharom, M. N. R. and Khan, F. (2022). Techno-economic analysis of grid-connected hybrid renewable energy system for remote areas electrification using HOMER Pro. Journal of Electrical Engineering & Technology, 17, 981–977. https://doi.org/10.1007/s42835-021-00984-2
  • Republic of Türkiye Ministry of Energy and Natural Resources, (2024). https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • Serat, Z., Danishmal, M. and Mohammadi, F. M. (2024). Optimizing hybrid PV/wind and grid systems for sustainable energy solutions at a university campus: Economic, environmental and sensitivity analysis. Energy Conversion and Management: X, 100691. https://doi.org/10.1016/j.ecmx.2024.100691
  • Shahbazitabar, M., Abdi, H., Nourianfar, H., Anvari-Moghaddam, A., Mohammadi-Ivatloo, B., & Hatziargyriou, N. (2021). An introduction to microgrids: Concepts, definitions, and classifications. Microgrids: Advances in Operation, Control, and Protection, 3–16.

OPTIMAL SIZING AND TECHNO-ECONOMIC ANALYSIS OF A GRID-CONNECTED WIND–SOLAR–HYDRO–BATTERY HYBRID ENERGY SYSTEM

Year 2025, Volume: 28 Issue: 4, 1732 - 1747, 03.12.2025

Abstract

Hybrid microgrid systems offer sustainable and low-emission solutions that reduce dependence on fossil fuels by integrating renewable energy resources. While most studies focus on solar–wind-based hybrid structures, this study examines a more comprehensive configuration by integrating wind, solar, and hydroelectric resources to meet the electricity demand of a 1,000-household settlement in Kırıkkale. The system also includes grid connection and battery storage units. To evaluate its technical and economic feasibility, HOMER Pro software was used, and multiple scenarios were analyzed through a multi-objective optimization approach. The main goals were to reliably meet the load demand, maximize renewable energy utilization, and minimize total system cost. Solar and wind data were obtained from the NASA database, while hydrological data were sourced from DSI measurements. The optimal scenario achieved a Net Present Value of 3.47 million USD, a Levelized Cost of Energy of 0.0252 USD/kWh, a renewable penetration rate of 91.5%, and a payback period of 8.60 years. The system is also estimated to reduce annual CO₂ emissions by 3,585,533 kg. These findings indicate that renewable-based hybrid microgrids are technically and economically viable for Kırıkkale and can serve as a reference model for regions with similar resource characteristics.

References

  • Adak, S., Cangi, H. and Yılmaz, A. S. (2019). Mathematical modeling and simulation of the photovoltaic system’s output power depend on temperature and irradiance. International Journal of Engineering Research and Development, 11(1), 316–327. https://doi.org/10.29137/umagd.456988
  • Afif, R., Ayed, Y. and Maaitah, O. N. (2023). Feasibility and optimal sizing analysis of hybrid renewable energy systems: A case study of Al-Karak, Jordan. Renewable Energy, 204, 229–249. https://doi.org/10.1016/j.renene.2022.12.109
  • Bilendo, F., Meyer, A., Badihi, H., Lu, N., Cambron, P. and Jiang, B. (2023). Applications and modeling techniques of wind turbine power curve for wind farms: A review. Energies, 16(1), 180. https://doi.org/10.3390/en16010180
  • British Petroleum, BP, (2023). BP Energy Outlook 2023 edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf
  • Coğrafyaharita, (2025). http://cografyaharita.com/turkiye_mulki_idare_haritalari.html
  • Çetinbaş, İ., Tamyürek, B. and Demirtaş, M. (2019). Design, analysis and optimization of a hybrid microgrid system using HOMER software: Eskişehir Osmangazi University example. International Journal of Renewable Energy Development, 8(1), 65–79.
  • Energy Institute, (2024). Statistical review of world energy. https://www.energyinst.org/statistical-review
  • EPIAS, Yekdem (2024). https://www.epias.com.tr/tum-duyurular/piyasa-duyurulari/elektrik/kayit-ve-uzlastirma/01-07-2021-tarihinden-31-12-2030-tarihine-kadar-isle tmeye-girecek-yek-belgeli-yenilenebilir-enerji-kaynaklarina-dayali-elektrik-ure tim-tesisleri-icin-uygulanacak-fiyatlar-hk-11.
  • Hermann, D. T., Donatien, N., Armel, T. K. F. and Rene, T. (2022). Techno-economic and environmental feasibility study with demand side management of photovoltaic/wind/hydroelectricity/battery/diesel: A case study in Sub-Saharan Africa. Energy Conversion and Management, 258, 115494. https://doi.org/10.1016/j.enconman.2022.115494
  • Hoang, A. T., Nižetić, S., Olcer, A. I., Ong, H. C., Chen, W., Chong, C. T., Thomas, S., Bandh, S. A., Nguyen, X. P. (2021). Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges and policy implications. Energy Policy, 156, 112322. https://doi.org/10.1016/j.enpol.2021.112322
  • HOMER, 2024. https://www.homerenergy.com/
  • Gupta, J., Nijhawan, P. and Ganguli, S. (2022). Optimal sizing of different configurations of photovoltaic, fuel cell, and biomass-based hybrid energy system. Environmental Science and Pollution Research, 29, 17425–17440. https://doi.org/10.1007/s11356-021-17080-7
  • Güven, A. F. and Yörükeren, N. (2022). Energy management and optimization of a hybrid energy system by particle swarm optimization algorithm–genetic algorithm and gray wolf optimizer technique: A case study for Yalova University. The Black Sea Journal of Sciences, 12(2), 853–879. https://doi.org/10.31466/kfbd.1169643
  • International Energy Agency (IEA), (2024). World energy outlook 2024. https://www.iea.org/reports/world-energy-outlook-2024
  • International Renewable Energy Agency (IRENA), (2023). World energy transitions outlook 2023:1.5°C Pathway. https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023
  • Kamal, Md. M., Ashraf, I. and Fernandez, E. (2023). Optimal sizing of standalone rural microgrid for sustainable electrification with renewable energy resources. Sustainable Cities and Society, 88, 104298. https://doi.org/10.1016/j.scs.2022.104298
  • Kaunda, C. S., Kimambo, C. Z. and Nielsen, T. K. (2012). Potential of small-scale hydropower for electricity generation in Sub-Saharan Africa. ISRN Renewable Energy, 2012, 132606. https://doi.org/10.5402/2012/132606
  • Kılıç, M. Y. and Adalı, S. (2022). Hybrid renewable energy system in providing electricity need: Supermarket example. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 5(1), 224–235. https://doi.org/10.47495/okufbed.998900
  • Mahmoud, F. S., Diab, A. A. Z., Ali, Z. M., El-Sayed, A. H. M., Alquthami, A., Ramadan, H. A. (2022). Optimal sizing of smart hybrid renewable energy system using different optimization algorithms. Energy Reports, 8, 4935–4956. https://doi.org/10.1016/j.egyr.2022.03.197
  • NASA, Nasapower, https://power.larc.nasa.gov/data-access-viewer/.
  • Naseh, M. R. and Behdani, E. (2021). Feasibility study for size optimization of a geothermal/PV/wind/diesel hybrid power plant using the harmony search algorithm. International Journal of Sustainable Energy, 40(6), 584–601. https://doi.org/10.1080/14786451.2020.1835907
  • Ngouleu, C. A. W., Kohole, Y. W., Cyrille, V. F. and Tchuen, G. (2023). Techno-economic analysis and optimal sizing of battery-based and hydrogen-based standalone photovoltaic/wind hybrid systems for rural electrification. Energy Conversion and Management, 280, 116794. https://doi.org/10.1016/j.enconman.2023.116794
  • Öztürk, E. T. and Kabalcı, E. (2024). Microgrid design with hybrid systems: Nevşehir Hacı Bektaş Veli University example. NEVU Journal of Engineering and Architecture, 2(1), 25–35.
  • Paish, O. (2002). Small hydropower: Technology and current status. Renewable and Sustainable Energy Reviews, 6, 537–556. https://doi.org/10.1016/S1364-0321(02)00006-0
  • Rashid, M. U., Ullah, I., Mehran, M., Baharom, M. N. R. and Khan, F. (2022). Techno-economic analysis of grid-connected hybrid renewable energy system for remote areas electrification using HOMER Pro. Journal of Electrical Engineering & Technology, 17, 981–977. https://doi.org/10.1007/s42835-021-00984-2
  • Republic of Türkiye Ministry of Energy and Natural Resources, (2024). https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • Serat, Z., Danishmal, M. and Mohammadi, F. M. (2024). Optimizing hybrid PV/wind and grid systems for sustainable energy solutions at a university campus: Economic, environmental and sensitivity analysis. Energy Conversion and Management: X, 100691. https://doi.org/10.1016/j.ecmx.2024.100691
  • Shahbazitabar, M., Abdi, H., Nourianfar, H., Anvari-Moghaddam, A., Mohammadi-Ivatloo, B., & Hatziargyriou, N. (2021). An introduction to microgrids: Concepts, definitions, and classifications. Microgrids: Advances in Operation, Control, and Protection, 3–16.
There are 28 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Power Plants
Journal Section Research Article
Authors

Yağmur Arıkan Yıldız 0000-0003-0947-2832

Özge Pınar Akkaş 0000-0001-5704-4678

Publication Date December 3, 2025
Submission Date April 16, 2025
Acceptance Date October 13, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Arıkan Yıldız, Y., & Akkaş, Ö. P. (2025). OPTIMAL SIZING AND TECHNO-ECONOMIC ANALYSIS OF A GRID-CONNECTED WIND–SOLAR–HYDRO–BATTERY HYBRID ENERGY SYSTEM. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1732-1747.