Research Article
BibTex RIS Cite

THE ANALYSIS OF THE EFFECT OF TİME DELAY ON STABILITY REGIONS IN AUTOMATIC VOLTAGE REGULATION SYSTEMS WİTH PI CONTROLLERS

Year 2025, Volume: 28 Issue: 4, 1759 - 1768, 03.12.2025

Abstract

In electric power systems, changes in active and reactive power can cause fluctuations in terminal voltage, which may unfavorable system stability. Therefore, voltage stability is a crucial indicator for the reliable and efficient operation of power systems. This study investigates the impact of time delay on the stability regions of automatic voltage regulation systems with Proportional–Integral (PI) controllers. Time delay in electric power systems is a critical parameter that directly influences control performance and has significant impacts on system stability and transient response. Within this scope, a weighted geometric center-based approach is adopted using stability boundary locus for determining PI controller parameter values in time-delayed automatic voltage regulation systems. In the proposed approach, the stability boundaries are determined for various delay values, and the resulting changes in PI controller parameters are analyzed. Simulation results demonstrate that time delay shifts the stability boundaries and causes notable differences in transient behavior.

References

  • Altas, I. H., & Sharaf, A. M. (1996). A novel on-line MPP search algorithm for PV arrays. IEEE Transactions on Energy Conversion, 11(4), 748–754. https://doi.org/10.1109/60.556374.
  • Ayas, M. S., & Sahin, E. (2021). FOPID controller with fractional filter for an automatic voltage regulator. Computers & Electrical Engineering, 90, 106895. https://doi.org/10.1016/j.compeleceng.2020.106895.
  • Boskovic, M. C., Sekara, T. B., & Rapaic, M. R. (2022). An Optimal Design of 2DoF FOPID/PID Controller using Non-symmetrical Optimum Principle for an AVR System with Time Delay. 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), 1–6. https://doi.org/10.1109/INFOTEH53737.2022.9751259.
  • Bourouba, B., Ladaci, S., & Schulte, H. (2019). Optimal design of fractional order PIλDμ controller for an AVR system using Ant Lion Optimizer. IFAC-PapersOnLine, 52(13), 200–205. https://doi.org/10.1016/j.ifacol.2019.11. 304.
  • Britto, M. N., Sivakumar, S., Ompriyadharshini, K., Mrinalini, R., & Nagarajan, S. (2018). Tuning of Finest Controller for AVR Unit – An Examination with Firefly-Algorithm. 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), 1–5. https://doi.org/10.1109/ICSCAN.2018.8541164.
  • Çelik, E., & Öztürk, N. (2018). A hybrid symbiotic organisms search and simulated annealing technique applied to efficient design of PID controller for automatic voltage regulator. Soft Computing, 22(23), 8011–8024. https://doi.org/10.1007/s00500-018-3432-2.
  • Dogruer, T., & Can, M. S. (2022). Design and robustness analysis of fuzzy PID controller for automatic voltage regulator system using genetic algorithm. Transactions of the Institute of Measurement and Control, 44(9), 1862 1873. https://doi.org/10.1177/01423312211066758.
  • Gaing, Z.-L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19(2), 384–391. https://doi.org/10.1109/TEC.2003.821821.
  • Ghasemi, M., Rahimnejad, A., Gil, M., Akbari, E., & Gadsden, S. A. (2023). A self-competitive mutation strategy for Differential Evolution algorithms with applications to Proportional–Integral–Derivative controllers and Automatic Voltage Regulator systems. Decision Analytics Journal, 7, 100205. https://doi.org/10.1016/j.dajour.2023.100205.
  • Gozde, H., & Taplamacioglu, M. C. (2011). Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 348(8), 1927–1946. https://doi.org/10.1016/j.jfranklin.2011.05.012.
  • Güler, Y., & Kaya, I. (2023). Load Frequency Control of Single-Area Power System with PI–PD Controller Design for Performance Improvement. Journal of Electrical Engineering & Technology, 18(4), 2633–2648. https://doi.org/10.1007/s42835-022-01371-1.
  • GÜLER, Y., NALBANTOĞLU, M., & KAYA, I. (2024). Cascade controller design via controller synthesis for load frequency control of electrical power systems. Turkish Journal of Electrical Engineering and Computer Sciences, 32(2), 285–304. https://doi.org/10.55730/1300-0632.4069.
  • Güler, Y., Nalbantoğlu, M., & Kaya, İ. (2024). Direct Synthesis-Based Optimal PIDD 2 Controller Design for Enhanced Load Frequency Control in Electrical Power Systems. 2024 Global Energy Conference (GEC), 315–320. https://doi.org/10.1109/GEC61857.2024.10881282.
  • İrgan, H., Menak, R., & Tan, N. (2025). A comparative study on PI-PD controller design using stability region centroid methods for unstable, integrating and resonant systems with time delay. Measurement and Control, 58(2), 245–265. https://doi.org/10.1177/00202940241253114.
  • Jegatheesh, A., Thiyagarajan, V., Selvan, N. B. M., & Raj, M. D. (2024). Voltage Regulation and Stability Enhancement in AVR System Based on SOA-FOPID Controller. Journal of Electrical Engineering & Technology, 19(1), 31–44. https://doi.org/10.1007/s42835-023-01507-x.
  • Kundur, P. (1994). Power system stability and control. In McGraw-Hill (pp. 45–138). https://doi.org/10.1049/ep. 1977.0418.
  • Li, C., Li, H., & Kou, P. (2014). Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system. Neurocomputing, 124, 139–148. https://doi.org/10.1016/j.neucom.2013.07.018.
  • López‐Flores, E., Aguirre‐Hernández, B., & Frías‐Armenta, M. E. (2024). Stability analysis of polynomials with an approach of differential topology. Asian Journal of Control. https://doi.org/10.1002/asjc.3476.
  • Mukherjee, V., & Ghoshal, S. P. (2007). Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electric Power Systems Research, 77(12), 1689–1698. https://doi.org/10.1016/j.epsr.2006.12.004.
  • Onat, C. (2013). A New Concept on PI Design for Time Delay Systems Weighted Geometrical Center. International Journal of Innovative Computing, Information and Control, 9, 1539–1556.
  • Onat, C., Hamamci, S. E., & Obuz, S. (2012). A Practical PI Tuning Approach For Time Delay Systems. IFAC Proceedings Volumes, 45(14), 102–107. https://doi.org/10.3182/20120622-3-US-4021.00027.
  • Ortiz-Quisbert, M. E., Duarte-Mermoud, M. A., Milla, F., Castro-Linares, R., & Lefranc, G. (2018). Optimal fractional order adaptive controllers for AVR applications. Electrical Engineering, 100(1), 267–283. https://doi.org/10.1007/s00202-016-0502-2.
  • Özdemir, M., & ÇELİK, V. (2017). PI Kontrolörlü Otomatik Gerilim Regülasyon Sisteminin Kararlılık Analizi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 1–1. https://doi.org/10.16984/saufenbilder.270251.
  • ÖZDEMİR, M. T. (2021). A novel optimum PI controller design based on stability boundary locus supported particle swarm optimization in AVR system. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 29(1), 291–309. https://doi.org/10.3906/elk-1910-81.
  • Ribeiro, R. L. A., Neto, C. M. S., Costa, F. B., Rocha, T. O. A., & Barreto, R. L. (2015). A sliding-mode voltage regulator for salient pole synchronous generator. Electric Power Systems Research, 129, 178–184. https://doi.org/10.1016/j.epsr.2015.07.016.
  • Shouran, M., & Alenezi, M. (2024). Automatic Voltage Regulator Betterment Based on a New Fuzzy FOPI+FOPD Tuned by TLBO. Fractal and Fractional, 9(1), 21. https://doi.org/10.3390/fractalfract9010021.
  • Tan, N., Kaya, I., Yeroglu, C., & Atherton, D. P. (2006). Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Conversion and Management, 47(18–19), 3045–3058. https://doi.org/10.1016/j.enconman.2006.03.022.
  • Tripathi, A., Verma, R. L., & Alam, M. S. (2013). Design of ziegler nichols tuning controller for avr system. International Journal of Research in Electronics & Communication Technology, 1(2), 154–158.
  • Zhu, H., Li, L., Zhao, Y., Guo, Y., & Yang, Y. (2009). CAS algorithm-based optimum design of PID controller in AVR system. Chaos, Solitons & Fractals, 42(2), 792–800. https://doi.org/10.1016/j.chaos.2009.02.006.

PI KONTROLÖRLÜ OTOMATİK GERİLİM REGÜLASYON SİSTEMLERİNDE ZAMAN GECİKMESİNİN KARARLILIK BÖLGELERİNE ETKİSİNİN ANALİZİ

Year 2025, Volume: 28 Issue: 4, 1759 - 1768, 03.12.2025

Abstract

Elektrik güç sistemlerinde, aktif ve reaktif güçte meydana gelen değişimler, şebeke terminal geriliminde dalgalanmalara yol açarak sistem kararlılığını olumsuz etkileyebilir. Bu nedenle gerilim kararlılığı, güç sistemlerinin güvenilir, verimli ve sürdürülebilir bir şekilde işletilmesi açısından kritik bir performans göstergesi olarak değerlendirilmektedir. Bu çalışmada, Oransal+İntegral (PI) kontrolörüne sahip otomatik gerilim regülasyon sistemlerinde zaman gecikmesinin sistem kararlılık bölgeleri üzerindeki etkisi analiz edilmiştir. Elektrik güç sistemlerinde zaman gecikmesi, kontrol performansını doğrudan etkileyen kritik bir parametre olup, sistem kararlılığı ve geçici rejim yanıtı üzerinde önemli etkilere sahiptir. Bu kapsamda, zaman gecikmeli otomatik gerilim regülasyon sistemlerinde PI kontrolör parametre değerleri için kararlılık sınır eğrileri kullanılarak ağırlıklı geometrik merkez yöntemine dayalı bir yaklaşım benimsenmiştir. Önerilen yöntem kapsamında, farklı zaman gecikme değerleri için sistemin kararlılık sınırları tanımlanmış ve PI kontrolör parametre değerlerinin değişimi analiz edilmiştir. Simülasyon sonuçları, zaman gecikmesindeki değişimin sistemin kararlılık sınırlarının değiştirdiğini ve geçici rejim davranışında önemli farklılıklar meydana getirdiğini göstermektedir.

Ethical Statement

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur.

References

  • Altas, I. H., & Sharaf, A. M. (1996). A novel on-line MPP search algorithm for PV arrays. IEEE Transactions on Energy Conversion, 11(4), 748–754. https://doi.org/10.1109/60.556374.
  • Ayas, M. S., & Sahin, E. (2021). FOPID controller with fractional filter for an automatic voltage regulator. Computers & Electrical Engineering, 90, 106895. https://doi.org/10.1016/j.compeleceng.2020.106895.
  • Boskovic, M. C., Sekara, T. B., & Rapaic, M. R. (2022). An Optimal Design of 2DoF FOPID/PID Controller using Non-symmetrical Optimum Principle for an AVR System with Time Delay. 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), 1–6. https://doi.org/10.1109/INFOTEH53737.2022.9751259.
  • Bourouba, B., Ladaci, S., & Schulte, H. (2019). Optimal design of fractional order PIλDμ controller for an AVR system using Ant Lion Optimizer. IFAC-PapersOnLine, 52(13), 200–205. https://doi.org/10.1016/j.ifacol.2019.11. 304.
  • Britto, M. N., Sivakumar, S., Ompriyadharshini, K., Mrinalini, R., & Nagarajan, S. (2018). Tuning of Finest Controller for AVR Unit – An Examination with Firefly-Algorithm. 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), 1–5. https://doi.org/10.1109/ICSCAN.2018.8541164.
  • Çelik, E., & Öztürk, N. (2018). A hybrid symbiotic organisms search and simulated annealing technique applied to efficient design of PID controller for automatic voltage regulator. Soft Computing, 22(23), 8011–8024. https://doi.org/10.1007/s00500-018-3432-2.
  • Dogruer, T., & Can, M. S. (2022). Design and robustness analysis of fuzzy PID controller for automatic voltage regulator system using genetic algorithm. Transactions of the Institute of Measurement and Control, 44(9), 1862 1873. https://doi.org/10.1177/01423312211066758.
  • Gaing, Z.-L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19(2), 384–391. https://doi.org/10.1109/TEC.2003.821821.
  • Ghasemi, M., Rahimnejad, A., Gil, M., Akbari, E., & Gadsden, S. A. (2023). A self-competitive mutation strategy for Differential Evolution algorithms with applications to Proportional–Integral–Derivative controllers and Automatic Voltage Regulator systems. Decision Analytics Journal, 7, 100205. https://doi.org/10.1016/j.dajour.2023.100205.
  • Gozde, H., & Taplamacioglu, M. C. (2011). Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 348(8), 1927–1946. https://doi.org/10.1016/j.jfranklin.2011.05.012.
  • Güler, Y., & Kaya, I. (2023). Load Frequency Control of Single-Area Power System with PI–PD Controller Design for Performance Improvement. Journal of Electrical Engineering & Technology, 18(4), 2633–2648. https://doi.org/10.1007/s42835-022-01371-1.
  • GÜLER, Y., NALBANTOĞLU, M., & KAYA, I. (2024). Cascade controller design via controller synthesis for load frequency control of electrical power systems. Turkish Journal of Electrical Engineering and Computer Sciences, 32(2), 285–304. https://doi.org/10.55730/1300-0632.4069.
  • Güler, Y., Nalbantoğlu, M., & Kaya, İ. (2024). Direct Synthesis-Based Optimal PIDD 2 Controller Design for Enhanced Load Frequency Control in Electrical Power Systems. 2024 Global Energy Conference (GEC), 315–320. https://doi.org/10.1109/GEC61857.2024.10881282.
  • İrgan, H., Menak, R., & Tan, N. (2025). A comparative study on PI-PD controller design using stability region centroid methods for unstable, integrating and resonant systems with time delay. Measurement and Control, 58(2), 245–265. https://doi.org/10.1177/00202940241253114.
  • Jegatheesh, A., Thiyagarajan, V., Selvan, N. B. M., & Raj, M. D. (2024). Voltage Regulation and Stability Enhancement in AVR System Based on SOA-FOPID Controller. Journal of Electrical Engineering & Technology, 19(1), 31–44. https://doi.org/10.1007/s42835-023-01507-x.
  • Kundur, P. (1994). Power system stability and control. In McGraw-Hill (pp. 45–138). https://doi.org/10.1049/ep. 1977.0418.
  • Li, C., Li, H., & Kou, P. (2014). Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system. Neurocomputing, 124, 139–148. https://doi.org/10.1016/j.neucom.2013.07.018.
  • López‐Flores, E., Aguirre‐Hernández, B., & Frías‐Armenta, M. E. (2024). Stability analysis of polynomials with an approach of differential topology. Asian Journal of Control. https://doi.org/10.1002/asjc.3476.
  • Mukherjee, V., & Ghoshal, S. P. (2007). Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electric Power Systems Research, 77(12), 1689–1698. https://doi.org/10.1016/j.epsr.2006.12.004.
  • Onat, C. (2013). A New Concept on PI Design for Time Delay Systems Weighted Geometrical Center. International Journal of Innovative Computing, Information and Control, 9, 1539–1556.
  • Onat, C., Hamamci, S. E., & Obuz, S. (2012). A Practical PI Tuning Approach For Time Delay Systems. IFAC Proceedings Volumes, 45(14), 102–107. https://doi.org/10.3182/20120622-3-US-4021.00027.
  • Ortiz-Quisbert, M. E., Duarte-Mermoud, M. A., Milla, F., Castro-Linares, R., & Lefranc, G. (2018). Optimal fractional order adaptive controllers for AVR applications. Electrical Engineering, 100(1), 267–283. https://doi.org/10.1007/s00202-016-0502-2.
  • Özdemir, M., & ÇELİK, V. (2017). PI Kontrolörlü Otomatik Gerilim Regülasyon Sisteminin Kararlılık Analizi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 1–1. https://doi.org/10.16984/saufenbilder.270251.
  • ÖZDEMİR, M. T. (2021). A novel optimum PI controller design based on stability boundary locus supported particle swarm optimization in AVR system. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 29(1), 291–309. https://doi.org/10.3906/elk-1910-81.
  • Ribeiro, R. L. A., Neto, C. M. S., Costa, F. B., Rocha, T. O. A., & Barreto, R. L. (2015). A sliding-mode voltage regulator for salient pole synchronous generator. Electric Power Systems Research, 129, 178–184. https://doi.org/10.1016/j.epsr.2015.07.016.
  • Shouran, M., & Alenezi, M. (2024). Automatic Voltage Regulator Betterment Based on a New Fuzzy FOPI+FOPD Tuned by TLBO. Fractal and Fractional, 9(1), 21. https://doi.org/10.3390/fractalfract9010021.
  • Tan, N., Kaya, I., Yeroglu, C., & Atherton, D. P. (2006). Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Conversion and Management, 47(18–19), 3045–3058. https://doi.org/10.1016/j.enconman.2006.03.022.
  • Tripathi, A., Verma, R. L., & Alam, M. S. (2013). Design of ziegler nichols tuning controller for avr system. International Journal of Research in Electronics & Communication Technology, 1(2), 154–158.
  • Zhu, H., Li, L., Zhao, Y., Guo, Y., & Yang, Y. (2009). CAS algorithm-based optimum design of PID controller in AVR system. Chaos, Solitons & Fractals, 42(2), 792–800. https://doi.org/10.1016/j.chaos.2009.02.006.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Electrical Energy Transmission, Networks and Systems, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Power Plants, High Voltage
Journal Section Research Article
Authors

Yavuz Güler 0000-0003-3072-8978

Publication Date December 3, 2025
Submission Date May 9, 2025
Acceptance Date October 27, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Güler, Y. (2025). PI KONTROLÖRLÜ OTOMATİK GERİLİM REGÜLASYON SİSTEMLERİNDE ZAMAN GECİKMESİNİN KARARLILIK BÖLGELERİNE ETKİSİNİN ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1759-1768.