Research Article
BibTex RIS Cite

COMPARATIVE INVESTIGATION OF THE SETTLEMENT BEHAVIOR OF CIRCULAR FLAT AND CONICAL WIND TURBINE FOUNDATIONS IN CLAYEY SOILS USING THE 3D FINITE ELEMENT METHOD

Year 2025, Volume: 28 Issue: 4, 1769 - 1777, 03.12.2025

Abstract

As the importance of renewable energy grows, the number of wind turbines is increasing, leading to construction on various soil types, including clayey soils. An important factor in ensuring the stability and long-term operation of wind energy systems is the deformation behavior of wind turbine foundations on clayey soils. The aim of this study is to compare the settlement performance of a conventional circular flat-type wind turbine foundation (CFT) and a conical-type foundation (CTF) using the three-dimensional finite element method. In the analyses, the effects of different soil parameters such as overconsolidation ratio (OCR), cohesion, and internal friction angle, as well as the torsional moment acting on the turbine, on the settlement and overall deformation of the turbine foundations were investigated. The results of the study show that the use of CTF results in less stress in the soil and better settlement performance compared to CFT. Additionally, it was found that the OCR significantly alters the way the foundation responds to deformation. Optimized stress distribution, improved resistance to shear and lateral forces and improved moment stability thanks to its geometry make CTF a more reliable and effective choice for supporting onshore wind turbines in complex ground environments.

References

  • ASTM. (2011). ASTM D7181-11: Standard test method for consolidated drained triaxial compression test for soils. ASTM International. https://www.astm.org/d7181-11.html
  • ASTM. (2017). ASTM D2435: Standard test methods for one-dimensional consolidation properties of soils. ASTM International. https://www.astm.org/d2435.html
  • Colmenares, J. E., Kang, S. R., Shin, Y. J., & Shin, J. H. (2013). Ultimate bearing capacity of conical shell foundation. In The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13) (pp. 3020–3040). Jeje, Korea.
  • Craig, W., & Chua, K. (1990). Deep penetration of spud-can foundations on sand and clay. Géotechnique, 40(4), 541–556. https://doi.org/10.1680/geot.1990.40.4.541
  • Dam, M. M. (2014). Sera gazı emisyonlarının makroekonomik değişkenlerle ilişkisi: OECD ülkeleri için panel veri analizi, Doktora Tezi, Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü, Aydın.
  • Demirci, H. E. (2023). Geotechnical preliminary design of onshore wind turbine foundations. Erzincan University Journal of Science and Technology, 16(3), 756–781. https://doi.org/10.18185/erzifbed.1306867
  • Huat, B. B. K., & Mohammed, T. A. (2006). Finite element study using FE code (PLAXIS) on the geotechnical behavior of shell footings. Journal of Computational Science, 2(1), 104–108.
  • Huat, B. B. K., Mohammed, T. A., Ali, A., & Abdullah, A. A. (2007). Numerical and field study on triangular shell footing for low rise building. International Journal of Engineering and Technology, 4(2), 194–204.
  • Indraratna, B., Jayanathan, M., & Brown, E. (2008). Shear strength model for overconsolidated clay-infilled idealised rock joints. Géotechnique, 58(1), 55–65. https://doi.org/10.1680/geot.2008.58.1.55
  • Kılıç, F., & Oral, M. (2023). Alternatif bir kaynak olarak Türkiye'de hidrojen enerjisi (pp. 1–117). Iksad Publishing House. https://dx.doi.org/10.5281/zenodo.10429043
  • Mohamed, W., Austrell, P. E., & Dahlblom, O. (2018). A new and reusable foundation solution for onshore windmills. Computers and Geotechnics, 99, 14–30. https://doi.org/10.1016/j.compgeo.2017.08.022
  • Motallebiyan, A., Bayat, M., & Nadi, B. (2020). Analyzing the effects of soil-structure interactions on the static response of onshore wind turbine foundations using finite element method. Civil Engineering Infrastructures Journal, 53(1), 189–205. https://doi.org/10.22059/ceij.2020.281914.1586
  • Saleh, S., Yunus, N. Z. M., Ahmad, K., & Said, K. N. M. (2021). Numerical simulation with hardening soil model parameters of marine clay obtained from conventional tests. SN Applied Sciences, 3, 156. https://doi.org/10.1007/s42452-021-04106-7
  • Shaligram, P. S. (2011). Behavior of triangular shell strip footing on georeinforced layered sand. International Journal of Advanced Engineering Technology, 2(2), 192–196.
  • Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E., & Guan, H. (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and Foundations, 52(4), 682–697. https://doi.org/10.1016/j.sandf.2012.07.009
  • Wael, M., & Austrell, P. E. (2018). A comparative study of three onshore wind turbine foundation solutions. Computers and Geotechnics, 94, 46–57. https://doi.org/10.1016/j.compgeo.2017.08.022
  • Wang, J., Zhuang, H., Guo, L., Cai, Y., Li, M., & Shi, L. (2022). Secondary compression behavior of over-consolidated soft clay after surcharge preloading. Acta Geotechnica, 17(3), 1009–1016. https://doi.org/10.1007/s11440-021-01276-9
  • Wu, S., Lok, T., Xu, Y., Wang, W., & Wu, B. (2021). Rate-dependent behavior of a saturated reconstituted clay under different over-consolidation ratios and sample variance. Acta Geotechnica, 16(11), 3425–3438. https://doi.org/10.1007/s11440-021-01293-8
  • Yousefi, H., Abbaspour, A., & Seraj, H. (2019). Worldwide development of wind energy and CO2 emission reduction. Environmental Energy and Economic Research, 3(1), 1–9. https://doi.org/10.22097/eeer.2019.164295.1064
  • Yaşar. (2019). Analysis of a wind turbine foundation on stiff clay with analytical and 3D finite element methods, Master's Thesis, Middle East Technical University, Ankara.

KİL ZEMİNLERDEKİ DÜZ VE KONİK RÜZGAR TÜRBİNİ TEMELLERİNİN OTURMA DAVRANIŞININ 3B SONLU ELEMANLAR YÖNTEMİYLE KARŞILAŞTIRMALI İNCELENMESİ

Year 2025, Volume: 28 Issue: 4, 1769 - 1777, 03.12.2025

Abstract

Yenilenebilir enerjinin önemi arttıkça, rüzgar türbinleri çoğalmakta ve killi zemin de dahil çeşitli zemin tiplerine inşaat yapılmaktadır. Rüzgâr enerjisi sistemlerinin stabilitesini ve uzun süreli çalışmasını garanti etmede önemli bir unsur, rüzgâr türbini temellerinin killi zeminlerdeki deformasyon davranışıdır. Bu çalışmanın amacı, geleneksel dairesel düz tip rüzgar türbin temeli (DTT) ve konik tip temelin (KTT) zemindeki oturma performanslarının 3 boyutlu sonlu eleman yöntemi kullanılarak kıyaslanmasıdır. Analizlerde, aşırı konsolidasyon oranı (AKO), kohezyon, içsel sürtünme açısı gibi farklı zemin parametreleri ve türbine etkiyen burulma momentinin türbin temellerinin oturmasını ve genel deformasyonunu nasıl etkilediği incelenmiştir. Çalışma sonucunda, KTT kullanıldığı durum DTT ile kıyaslandığında zeminde daha az gerilme olması ve daha iyi bir oturma performansı elde edilmesine olanak sağlamıştır. Ayrıca, AKO' nun temelin deformasyona tepki verme biçimini önemli ölçüde değiştirdiği tespit edilmiştir. Sahip olduğu geometri sayesinde optimize edilmiş gerilim dağılımı, kesme ve yanal kuvvetlere karşı geliştirilmiş direnci ve iyileştirilmiş moment kararlılığı, KTT’ nin karmaşık zemin ortamlarında kara rüzgar türbinlerini desteklemek için daha güvenilir ve etkili bir seçim haline getirmektedir.

References

  • ASTM. (2011). ASTM D7181-11: Standard test method for consolidated drained triaxial compression test for soils. ASTM International. https://www.astm.org/d7181-11.html
  • ASTM. (2017). ASTM D2435: Standard test methods for one-dimensional consolidation properties of soils. ASTM International. https://www.astm.org/d2435.html
  • Colmenares, J. E., Kang, S. R., Shin, Y. J., & Shin, J. H. (2013). Ultimate bearing capacity of conical shell foundation. In The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13) (pp. 3020–3040). Jeje, Korea.
  • Craig, W., & Chua, K. (1990). Deep penetration of spud-can foundations on sand and clay. Géotechnique, 40(4), 541–556. https://doi.org/10.1680/geot.1990.40.4.541
  • Dam, M. M. (2014). Sera gazı emisyonlarının makroekonomik değişkenlerle ilişkisi: OECD ülkeleri için panel veri analizi, Doktora Tezi, Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü, Aydın.
  • Demirci, H. E. (2023). Geotechnical preliminary design of onshore wind turbine foundations. Erzincan University Journal of Science and Technology, 16(3), 756–781. https://doi.org/10.18185/erzifbed.1306867
  • Huat, B. B. K., & Mohammed, T. A. (2006). Finite element study using FE code (PLAXIS) on the geotechnical behavior of shell footings. Journal of Computational Science, 2(1), 104–108.
  • Huat, B. B. K., Mohammed, T. A., Ali, A., & Abdullah, A. A. (2007). Numerical and field study on triangular shell footing for low rise building. International Journal of Engineering and Technology, 4(2), 194–204.
  • Indraratna, B., Jayanathan, M., & Brown, E. (2008). Shear strength model for overconsolidated clay-infilled idealised rock joints. Géotechnique, 58(1), 55–65. https://doi.org/10.1680/geot.2008.58.1.55
  • Kılıç, F., & Oral, M. (2023). Alternatif bir kaynak olarak Türkiye'de hidrojen enerjisi (pp. 1–117). Iksad Publishing House. https://dx.doi.org/10.5281/zenodo.10429043
  • Mohamed, W., Austrell, P. E., & Dahlblom, O. (2018). A new and reusable foundation solution for onshore windmills. Computers and Geotechnics, 99, 14–30. https://doi.org/10.1016/j.compgeo.2017.08.022
  • Motallebiyan, A., Bayat, M., & Nadi, B. (2020). Analyzing the effects of soil-structure interactions on the static response of onshore wind turbine foundations using finite element method. Civil Engineering Infrastructures Journal, 53(1), 189–205. https://doi.org/10.22059/ceij.2020.281914.1586
  • Saleh, S., Yunus, N. Z. M., Ahmad, K., & Said, K. N. M. (2021). Numerical simulation with hardening soil model parameters of marine clay obtained from conventional tests. SN Applied Sciences, 3, 156. https://doi.org/10.1007/s42452-021-04106-7
  • Shaligram, P. S. (2011). Behavior of triangular shell strip footing on georeinforced layered sand. International Journal of Advanced Engineering Technology, 2(2), 192–196.
  • Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E., & Guan, H. (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and Foundations, 52(4), 682–697. https://doi.org/10.1016/j.sandf.2012.07.009
  • Wael, M., & Austrell, P. E. (2018). A comparative study of three onshore wind turbine foundation solutions. Computers and Geotechnics, 94, 46–57. https://doi.org/10.1016/j.compgeo.2017.08.022
  • Wang, J., Zhuang, H., Guo, L., Cai, Y., Li, M., & Shi, L. (2022). Secondary compression behavior of over-consolidated soft clay after surcharge preloading. Acta Geotechnica, 17(3), 1009–1016. https://doi.org/10.1007/s11440-021-01276-9
  • Wu, S., Lok, T., Xu, Y., Wang, W., & Wu, B. (2021). Rate-dependent behavior of a saturated reconstituted clay under different over-consolidation ratios and sample variance. Acta Geotechnica, 16(11), 3425–3438. https://doi.org/10.1007/s11440-021-01293-8
  • Yousefi, H., Abbaspour, A., & Seraj, H. (2019). Worldwide development of wind energy and CO2 emission reduction. Environmental Energy and Economic Research, 3(1), 1–9. https://doi.org/10.22097/eeer.2019.164295.1064
  • Yaşar. (2019). Analysis of a wind turbine foundation on stiff clay with analytical and 3D finite element methods, Master's Thesis, Middle East Technical University, Ankara.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Hakan Yalçın 0000-0003-3346-1893

Publication Date December 3, 2025
Submission Date May 9, 2025
Acceptance Date September 5, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Yalçın, H. (2025). KİL ZEMİNLERDEKİ DÜZ VE KONİK RÜZGAR TÜRBİNİ TEMELLERİNİN OTURMA DAVRANIŞININ 3B SONLU ELEMANLAR YÖNTEMİYLE KARŞILAŞTIRMALI İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1769-1777.