Research Article
BibTex RIS Cite

TELDEN-PLAKAYA DBD ELEKTROSTATİK ÇÖKTÜRÜCÜLERDE YÜKLÜ PARTİKÜL DAVRANIŞININ 3-BOYUTLU NÜMERİK MODELLEME İLE ARAŞTIRILMASI

Year 2025, Volume: 28 Issue: 4, 1843 - 1860, 03.12.2025

Abstract

Tel-levha tipi bir elektrostatik çökeltici üzerindeki dielektrik bariyer deşarj etkilerini temsil eden sayısal bir model oluşturulmuştur. İlk kez, zamana bağlı, çoklu parçacık yörünge modeli uygulanmış ve alan ve difüzyon yükleme mekanizmalarının etkileri altında farklı mikron ve alt mikron çaplarına sahip küresel parçacıkların çökelme karakteristikleri incelenmiştir. Sistemin dielektrik bariyer deşarj akımları ve uzay yükü karakteristiklerinin modellenmesinde 100 metre ve 1 metre frekansları dikkate alınmış, elektriksel parametreler ve çökelme verimliliğinde ortaya çıkan değerlerde önemli farklılıklar bulunmuştur. Çapları 0.3µm ile 5µm arasında değişen parçacıklar, 0.5m/s veya 1m/s serbest akış hızlarına sahip elektrostatik çökelme kanalına enjekte edilmiştir. Yapılan elektriksel simülasyonlar, 100Hz ve 1Hz senaryoları için 10.7mC/m3 ve 12,9mC/m3 tepe uzay yükü yoğunluğu değerleri göstermekte olup, bu da sırasıyla birim hacim başına 8,193N/m3 ve 87,654N/m3 elektrohidrodinamik kuvvet değerleri vermektedir. Elektriksel alan ve elektrohidrodinamik özelliklerin bu sonuçlarına göre, mikron altı (0,3µm çapındaki) parçacıklar, 100Hz ve 1kHz durumlar için her bir elektrik çevriminin sonunda 400 ve 261 toplam yük sayısı sergilemektedir. Parçacık çökelme sonuçları, model yapılandırmasını nitel olarak doğrularken, elektriksel özellikler konuyla ilgili mevcut literatürle karşılaştırılarak doğrulanmıştır.

References

  • Adamiak, K. (2020). Two-species modeling of electrohydrodynamic pump based on surface dielectric barrier discharge, Journal of Electrostatics, Volume 106, 103470, doi.org/10.1016/j.elstat.2020.103470.
  • Boeuf, J.P. & Pitchford, L.C. (2005). Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge, J. Appl. Phys. 97, 1–11. doi.og/10.1088/0022-3727/40/3/S03
  • Choi, H.Y., Park, Y.G., & Ha, M.Y. (2021). Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator, Powder Technol. 382, 232–243. doi.org/10.1016/j.powtec.2020.12.070
  • COMSOL Multiphysics® v. 6.3. Reference Manual, www.comsol.com. COMSOL AB, Stockholm, Sweden (2024). https://doc.comsol.com/6.3/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html
  • Dastoori, K., Kolhe, M., Mallard, C. & Makin, B. (2011). Electrostatic Precipitation in a Small-scale Wood Combustion Furnace. Journal of Electrostatics, vol. 69, no. 5, 466–472, doi.org/10.1016/j.elstat.2011.06.005.
  • De Oliveira, A.E. & Guerra, V.G. (2021). Electrostatic Precipitation of Nanoparticles and Submicron Particles: Review of Technological Strategies, Process Safety and Environmental Protection, Volume 153, pp. 422-438, doi.org/10.1016/j.psep.2021.07.043.
  • Ekin, O. & Adamiak, K. (2023). Electric field and EHD flow in longitudinal wire-to-plate DC and DBD electrostatic precipitators: A numerical study, Journal of Electrostatics, Volume 124, 2023, 103826. doi.org/10.1016/j.elstat.2023.103826.
  • Ekin, O. & Cerci, Y. (2022). A computational fluid dynamics-discrete element modeling study on flow field and particle sedimentation processes in a disk-stack centrifuge settler, Sigma J Eng Nat Sci, Vol. 40, No. 2, pp. 356–369, doi.org/10.14744/sigma.2022.00038
  • Ekin, O. (2024). A Numerical Analysis on the Submicron- And Micron-Sized Particle Sedimentation in a Wire-to-plate Electrostatic Precipitator. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1),78-91. doi.org/10.17780/ksujes.1354863
  • Evrard, F., Denner & F., van Wachem, B. (2020). Euler-Lagrange modelling of dilute particle-laden flows with arbitrary particle-size to mesh-spacing ratio, Journal of Computational Physics: X, Volume 8, 100078, doi.org/10.1016/j.jcpx.2020.100078.
  • Feng, Y., Gao, W., Zhou, M., Luo, K., Fan, J., Zheng, C. & Gao, X. (2020). Numerical modeling on simultaneous removal of mercury and particulate matter within an electrostatic precipitator, Adv. Powder Technol. 31 1759–1770. doi.org/10.1016/j.apt.2020.01.037
  • Flagan, R. C. & Seinfeld, J. H. (1988). Fundamentals of air pollution engineering, Seinfeld, Prentice-Hall.
  • Gao, H., Long, Z., Feng, Z., Lin, B. & Yu, T. (2022). Numerical simulation of the characteristics of oil mist particles deposition in electrostatic precipitator, Process Saf. Environ. Protect. 164, 335–344. doi.org/10.1016/j.psep.2022.06.022
  • Gavahian, M., Nayi, P., Masztalerz, K., Szumny, A. & Figiel, A. (2024). Cold plasma as an emerging energy-saving pretreatment to enhance food drying: Recent advances, mechanisms involved, and considerations for industrial applications—trends in Food Science & Technology, Volume 143, 104210, doi.org/10.1016/j.tifs.2023.104210.
  • Ghazanchaei, M., Adamiak, K. & Castle, G. S. P. (2014). Quasi-stationary numerical model of the dielectric barrier discharge, Journal of Electrostatics, Volume 72, Issue 4, Pages 261-269, doi.org/10.1016/j.elstat.2014.04.002.
  • Go, D.B., Garimella, S.V., Fisher, T.S. & Mongia, R.K. (2007). Ionic winds for locally enhanced cooling, J. Appl. Phys. 102, 1–9. doi.org/10.1063/1.2776164
  • Hebbar, N., Aitsaid, H., Aissou, M., Nouri, H. & Zeghloul. T. (2024). Experimental Study of the Collection Efficiency of Three Configurations of Blades-Plates-Type Electrostatic Precipitators. Particulate Science and Technology 42 (6): 1020–30. doi:10.1080/02726351.2024.2320098.
  • Jaworek, A., Marchewicz, A., Sobczyk, A. T., Krupa, A. & Czech, T. (2024). Recent advances in electrostatic precipitation of particles from flue gases generated by domestic heating appliances. A brief outlook, Journal of Electrostatics, Volume 129, 2024, 103922, doi.org/10.1016/j.elstat.2024.103922.
  • Jayaraman, B. & Wei S. (2008). Modeling of Dielectric Barrier Discharge-Induced Fluid Dynamics and Heat Transfer. Progress in Aerospace Sciences, vol. 44, no. 3, pp. 139–191, doi.org/10.1016/j.paerosci.2007.10.004.
  • Johnson, M. & Go, D.B. (2017). Recent advances in electrohydrodynamic pumps operated by ionic winds: a review, Plasma Sources Sci. Technol. 26–10, 1–66. doi.org/10.1088/1361-6595/aa88e7
  • Li, L. & Gopalakrishnan, R. (2021). An experimentally validated model of diffusion charging of arbitrary shaped aerosol particles. Journal of Aerosol Science, vol: 151, no. 1, pp. 1-28. doi.org/10.1016/j.jaerosci.2020.105678
  • Li, S., Li, M., Ma, J., Fu, Y., Tian, Y., Shen, X., Li, J., Zhu, W., Ke, Y., Clack, H. L. & Yan, K. (2022) Characterization of electrohydrodynamic flow in a plate-plate electrostatic precipitator with a wire-cylinder pre-charger by data-driven vortex and residence time analysis, Powder Technology, Volume 397, 117015. doi.org/10.1016/j.powtec.2021.11.059.
  • Luo, K., Li, Y., Zheng, C., Gao, X. & Fan, J. (2015). Numerical simulation of temperature effect on particles behavior via electrostatic precipitators, IEEE Trans. Dielectr. Electr. Insul. 88, 127–139. doi.org/10.1016/j.applthermaleng.2014.11.078
  • Misra, N.N. & Martynenko, A. (2021). Multipin dielectric barrier discharge for drying of foods and biomaterials, Innovative Food Science & Emerging Technologies, Volume 70, 2021, 102672, doi.org/10.1016/j.ifset.2021.102672.
  • Molchanov, O. Krpec, K., Horák, J., Kubonová, L., Hopan, F. & Ryšavý, J. (2024). Combined control of PM and NOx emissions by corona discharge, Separation and Purification Technology, Volume 345, 127359, doi.org/10.1016/j.seppur.2024.127359.
  • Oishi, T.K., Pouzada, E.V.S. & Gut, J.A.W. (2025) Multiphysics modeling of wire-to-plate electrohydrodynamic drying with air crossflow. Brazilian Journal of Chemical Engineering, 42, 527–536. doi.org/10.1007/s43153-024-00450-2
  • Preston, H. E., Bayliss, R., Temperton, N., Neto, M. M., Brewer, J. & Parker, A. L. (2023). Capture and inactivation of viral particles from bioaerosols by electrostatic precipitation. iScience, Volume 26, Issue 9, 2023, 107567, doi.org/10.1016/j.isci.2023.107567.
  • Shimizu, K., Kristof, J., Blajan, M.G. (2019). Applications of Dielectric Barrier Discharge Microplasma. Atmospheric Pressure Plasma - from Diagnostics to Applications. Editor: Nikiforov, A. London: Intech Open Science. doi.org/10.5772/intechopen.81425
  • Soloviev, V R. & Krivtsov, V M. (2009). Surface barrier discharge modelling for aerodynamic applications. J. Phys. D: Appl. Phys. 42 125208, doi:10.1088/0022-3727/42/12/125208.
  • Song, Y., Zhang, Y., Liu, Y., Long, W., Tao, K. & Vafai, K. (2023). Numerical simulation of the collection efficiency of welding fume particles in electrostatic precipitator, Powder Technol. 415, 1–12. doi.org/10.1016/j.powtec.2022.118173
  • Vaddi, R.S., Guan, Y. & Novosselov, I. (2020). Behavior of ultrafine particles in electro-hydrodynamic flow induced by corona discharge. Journal of Aerosol Science 148, 105587. doi.org/10.1016/j.jaerosci.2020.105587
  • Versteeg, H.K. & Malalasekera, W. (2007). An introduction to computational fluid dynamics 2e, Pearson Education Ltd., The United Kingdom.
  • Wu, Z., Wang, D., Wang, Y., Shao, L., He, Y., Liu, H., Zheng, C. & Gao, X (2023). Particle collection and heavy metals migration during high-temperature electrostatic precipitation in copper smelting: A pilot-scale study, Fuel, 331, p. 125851. doi:10.1016/j.fuel.2022.125851.
  • Xinglian Y. (2024). Gas-particle flow-induced erosion of economizer in low-low-temperature electrostatic precipitators: Numerical prediction and engineering application, Powder Technology, Volume 439, 119696, doi.org/10.1016/j.powtec.2024.
  • Yan, X. (2022). Numerical design of self-pumped electrostatic precipitators for particle collection, Chem. Eng. Res. Des. 186, 149–160. doi.org/10.1016/j.cherd.2022.07.045
  • Yan, X. (2022). Numerical design of self-pumped electrostatic precipitators for particle collection, Chem. Eng. Res. Des. 186, 149–160. doi.org/10.1016/j.cherd.2022.07.045
  • Zhang, B., Aravind, I., Yang, S., Weng, S., Zhao, B., Schroeder, C., Schroeder, W., Thomas, M., Umstattd, R., Singleton, D., Sanders, J., Jung, H. & Cronin, S. B. (2002). Plasma-enhanced electrostatic precipitation of diesel exhaust particulates using nanosecond high voltage pulse discharge for mobile source emission control. Science of The Total Environment, Volume 851, Part 1, 158181, doi.org/10.1016/j.scitotenv.2022.158181.
  • Zhu, Y., Chen, C., Chen, M., Shi, J. & Shangguan, W. (2021). Numerical simulation of electrostatic field and its influence on submicron particle charging in small-sized charger for consideration of voltage polarity. Powder Technology, vol: 380, no. 1, pp. 183-198. doi.org/10.1016/j.powtec.2020.11.042.
  • Zouaghi, A., Zouzou, N., Mekhaldi, A. & Gouri, R. (2016). Submicron Particles Trajectory and Collection Efficiency in a Miniature Planar DBD-ESP: Theoretical Model and Experimental Validation, Journal of Electrostatics, 82 (x): 38–47. doi.org/10.1016/j.elstat.2016.05.004
  • Zouzou, N. & Moreau, E. (2011). Effect of a Filamentary Discharge on the Particle Trajectory in a Plane-to-Plane DBD Precipitator, Journal of Physics D: Applied Physics 44 (28), 1–6. doi.org/10.1088/0022-3727/44/28/285204
  • Zouzou, N., Dramane, B., Moreau, E. & Touchard, G. (2011). EHD Flow and Collection Efficiency of a DBD ESP in Wire-to-Plane and Plane-to-Plane Configurations. IEEE Transactions on Industry Applications, 47(1), 336–343. doi.org/10.1109/tia.2010.2091473
  • Zouzou, N., Dramane, B., Moreau, E., Touchard & G. (2011). EHD Flow and Collection Efficiency of a DBD ESP in Wire-to-Plane and Plane-to-Plane Configurations, IEEE Transactions on Industry Applications, 47 (1), 336–343. doi.org/10.1109/TIA.2010.2091473

A 3D NUMERICAL INVESTIGATION ON THE CHARGED PARTICLE BEHAVIOR IN WIRE-TO-PLATE DBD ELECTROSTATIC PRECIPITATORS

Year 2025, Volume: 28 Issue: 4, 1843 - 1860, 03.12.2025

Abstract

A numerical model was developed to represent the effects of dielectric barrier discharge on a wire-to-plate electrostatic precipitator. For the first time, a time-dependent, multiple-particle trajectory model was implemented, and the precipitation characteristics of particles with micron- and submicron-diameters under field and diffusion charging mechanisms were investigated. 100 Hz and 1kHz frequencies were considered in modeling dielectric barrier discharge currents and the system's space charge characteristics, with significant differences in electrical parameters and precipitation efficiency. Particles with diameters varying from 0.3µm to 5µm, injected into the precipitation channel that has free flow velocities of 0.5m/s or 1m/s. The conducted electrical simulations show peak space-charge densities of 10.7 mC/m3 and 12.9 mC/m3 for 100Hz and 1kHz scenarios, which, in turn, yield electrohydrodynamic force values of 8,193N/m3 and 87,654 N/m3, respectively. Based on these results for the electrical field and electrohydrodynamic properties, submicron (0.3µm diameter) particles display accumulated charge numbers of 400 and 261 at the end of each electrical cycle for the 100Hz and 1kHz meter cases. The particle precipitation results qualitatively confirm the model configuration, whereas the electrical characteristics are validated against the available literature.

References

  • Adamiak, K. (2020). Two-species modeling of electrohydrodynamic pump based on surface dielectric barrier discharge, Journal of Electrostatics, Volume 106, 103470, doi.org/10.1016/j.elstat.2020.103470.
  • Boeuf, J.P. & Pitchford, L.C. (2005). Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge, J. Appl. Phys. 97, 1–11. doi.og/10.1088/0022-3727/40/3/S03
  • Choi, H.Y., Park, Y.G., & Ha, M.Y. (2021). Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator, Powder Technol. 382, 232–243. doi.org/10.1016/j.powtec.2020.12.070
  • COMSOL Multiphysics® v. 6.3. Reference Manual, www.comsol.com. COMSOL AB, Stockholm, Sweden (2024). https://doc.comsol.com/6.3/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html
  • Dastoori, K., Kolhe, M., Mallard, C. & Makin, B. (2011). Electrostatic Precipitation in a Small-scale Wood Combustion Furnace. Journal of Electrostatics, vol. 69, no. 5, 466–472, doi.org/10.1016/j.elstat.2011.06.005.
  • De Oliveira, A.E. & Guerra, V.G. (2021). Electrostatic Precipitation of Nanoparticles and Submicron Particles: Review of Technological Strategies, Process Safety and Environmental Protection, Volume 153, pp. 422-438, doi.org/10.1016/j.psep.2021.07.043.
  • Ekin, O. & Adamiak, K. (2023). Electric field and EHD flow in longitudinal wire-to-plate DC and DBD electrostatic precipitators: A numerical study, Journal of Electrostatics, Volume 124, 2023, 103826. doi.org/10.1016/j.elstat.2023.103826.
  • Ekin, O. & Cerci, Y. (2022). A computational fluid dynamics-discrete element modeling study on flow field and particle sedimentation processes in a disk-stack centrifuge settler, Sigma J Eng Nat Sci, Vol. 40, No. 2, pp. 356–369, doi.org/10.14744/sigma.2022.00038
  • Ekin, O. (2024). A Numerical Analysis on the Submicron- And Micron-Sized Particle Sedimentation in a Wire-to-plate Electrostatic Precipitator. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1),78-91. doi.org/10.17780/ksujes.1354863
  • Evrard, F., Denner & F., van Wachem, B. (2020). Euler-Lagrange modelling of dilute particle-laden flows with arbitrary particle-size to mesh-spacing ratio, Journal of Computational Physics: X, Volume 8, 100078, doi.org/10.1016/j.jcpx.2020.100078.
  • Feng, Y., Gao, W., Zhou, M., Luo, K., Fan, J., Zheng, C. & Gao, X. (2020). Numerical modeling on simultaneous removal of mercury and particulate matter within an electrostatic precipitator, Adv. Powder Technol. 31 1759–1770. doi.org/10.1016/j.apt.2020.01.037
  • Flagan, R. C. & Seinfeld, J. H. (1988). Fundamentals of air pollution engineering, Seinfeld, Prentice-Hall.
  • Gao, H., Long, Z., Feng, Z., Lin, B. & Yu, T. (2022). Numerical simulation of the characteristics of oil mist particles deposition in electrostatic precipitator, Process Saf. Environ. Protect. 164, 335–344. doi.org/10.1016/j.psep.2022.06.022
  • Gavahian, M., Nayi, P., Masztalerz, K., Szumny, A. & Figiel, A. (2024). Cold plasma as an emerging energy-saving pretreatment to enhance food drying: Recent advances, mechanisms involved, and considerations for industrial applications—trends in Food Science & Technology, Volume 143, 104210, doi.org/10.1016/j.tifs.2023.104210.
  • Ghazanchaei, M., Adamiak, K. & Castle, G. S. P. (2014). Quasi-stationary numerical model of the dielectric barrier discharge, Journal of Electrostatics, Volume 72, Issue 4, Pages 261-269, doi.org/10.1016/j.elstat.2014.04.002.
  • Go, D.B., Garimella, S.V., Fisher, T.S. & Mongia, R.K. (2007). Ionic winds for locally enhanced cooling, J. Appl. Phys. 102, 1–9. doi.org/10.1063/1.2776164
  • Hebbar, N., Aitsaid, H., Aissou, M., Nouri, H. & Zeghloul. T. (2024). Experimental Study of the Collection Efficiency of Three Configurations of Blades-Plates-Type Electrostatic Precipitators. Particulate Science and Technology 42 (6): 1020–30. doi:10.1080/02726351.2024.2320098.
  • Jaworek, A., Marchewicz, A., Sobczyk, A. T., Krupa, A. & Czech, T. (2024). Recent advances in electrostatic precipitation of particles from flue gases generated by domestic heating appliances. A brief outlook, Journal of Electrostatics, Volume 129, 2024, 103922, doi.org/10.1016/j.elstat.2024.103922.
  • Jayaraman, B. & Wei S. (2008). Modeling of Dielectric Barrier Discharge-Induced Fluid Dynamics and Heat Transfer. Progress in Aerospace Sciences, vol. 44, no. 3, pp. 139–191, doi.org/10.1016/j.paerosci.2007.10.004.
  • Johnson, M. & Go, D.B. (2017). Recent advances in electrohydrodynamic pumps operated by ionic winds: a review, Plasma Sources Sci. Technol. 26–10, 1–66. doi.org/10.1088/1361-6595/aa88e7
  • Li, L. & Gopalakrishnan, R. (2021). An experimentally validated model of diffusion charging of arbitrary shaped aerosol particles. Journal of Aerosol Science, vol: 151, no. 1, pp. 1-28. doi.org/10.1016/j.jaerosci.2020.105678
  • Li, S., Li, M., Ma, J., Fu, Y., Tian, Y., Shen, X., Li, J., Zhu, W., Ke, Y., Clack, H. L. & Yan, K. (2022) Characterization of electrohydrodynamic flow in a plate-plate electrostatic precipitator with a wire-cylinder pre-charger by data-driven vortex and residence time analysis, Powder Technology, Volume 397, 117015. doi.org/10.1016/j.powtec.2021.11.059.
  • Luo, K., Li, Y., Zheng, C., Gao, X. & Fan, J. (2015). Numerical simulation of temperature effect on particles behavior via electrostatic precipitators, IEEE Trans. Dielectr. Electr. Insul. 88, 127–139. doi.org/10.1016/j.applthermaleng.2014.11.078
  • Misra, N.N. & Martynenko, A. (2021). Multipin dielectric barrier discharge for drying of foods and biomaterials, Innovative Food Science & Emerging Technologies, Volume 70, 2021, 102672, doi.org/10.1016/j.ifset.2021.102672.
  • Molchanov, O. Krpec, K., Horák, J., Kubonová, L., Hopan, F. & Ryšavý, J. (2024). Combined control of PM and NOx emissions by corona discharge, Separation and Purification Technology, Volume 345, 127359, doi.org/10.1016/j.seppur.2024.127359.
  • Oishi, T.K., Pouzada, E.V.S. & Gut, J.A.W. (2025) Multiphysics modeling of wire-to-plate electrohydrodynamic drying with air crossflow. Brazilian Journal of Chemical Engineering, 42, 527–536. doi.org/10.1007/s43153-024-00450-2
  • Preston, H. E., Bayliss, R., Temperton, N., Neto, M. M., Brewer, J. & Parker, A. L. (2023). Capture and inactivation of viral particles from bioaerosols by electrostatic precipitation. iScience, Volume 26, Issue 9, 2023, 107567, doi.org/10.1016/j.isci.2023.107567.
  • Shimizu, K., Kristof, J., Blajan, M.G. (2019). Applications of Dielectric Barrier Discharge Microplasma. Atmospheric Pressure Plasma - from Diagnostics to Applications. Editor: Nikiforov, A. London: Intech Open Science. doi.org/10.5772/intechopen.81425
  • Soloviev, V R. & Krivtsov, V M. (2009). Surface barrier discharge modelling for aerodynamic applications. J. Phys. D: Appl. Phys. 42 125208, doi:10.1088/0022-3727/42/12/125208.
  • Song, Y., Zhang, Y., Liu, Y., Long, W., Tao, K. & Vafai, K. (2023). Numerical simulation of the collection efficiency of welding fume particles in electrostatic precipitator, Powder Technol. 415, 1–12. doi.org/10.1016/j.powtec.2022.118173
  • Vaddi, R.S., Guan, Y. & Novosselov, I. (2020). Behavior of ultrafine particles in electro-hydrodynamic flow induced by corona discharge. Journal of Aerosol Science 148, 105587. doi.org/10.1016/j.jaerosci.2020.105587
  • Versteeg, H.K. & Malalasekera, W. (2007). An introduction to computational fluid dynamics 2e, Pearson Education Ltd., The United Kingdom.
  • Wu, Z., Wang, D., Wang, Y., Shao, L., He, Y., Liu, H., Zheng, C. & Gao, X (2023). Particle collection and heavy metals migration during high-temperature electrostatic precipitation in copper smelting: A pilot-scale study, Fuel, 331, p. 125851. doi:10.1016/j.fuel.2022.125851.
  • Xinglian Y. (2024). Gas-particle flow-induced erosion of economizer in low-low-temperature electrostatic precipitators: Numerical prediction and engineering application, Powder Technology, Volume 439, 119696, doi.org/10.1016/j.powtec.2024.
  • Yan, X. (2022). Numerical design of self-pumped electrostatic precipitators for particle collection, Chem. Eng. Res. Des. 186, 149–160. doi.org/10.1016/j.cherd.2022.07.045
  • Yan, X. (2022). Numerical design of self-pumped electrostatic precipitators for particle collection, Chem. Eng. Res. Des. 186, 149–160. doi.org/10.1016/j.cherd.2022.07.045
  • Zhang, B., Aravind, I., Yang, S., Weng, S., Zhao, B., Schroeder, C., Schroeder, W., Thomas, M., Umstattd, R., Singleton, D., Sanders, J., Jung, H. & Cronin, S. B. (2002). Plasma-enhanced electrostatic precipitation of diesel exhaust particulates using nanosecond high voltage pulse discharge for mobile source emission control. Science of The Total Environment, Volume 851, Part 1, 158181, doi.org/10.1016/j.scitotenv.2022.158181.
  • Zhu, Y., Chen, C., Chen, M., Shi, J. & Shangguan, W. (2021). Numerical simulation of electrostatic field and its influence on submicron particle charging in small-sized charger for consideration of voltage polarity. Powder Technology, vol: 380, no. 1, pp. 183-198. doi.org/10.1016/j.powtec.2020.11.042.
  • Zouaghi, A., Zouzou, N., Mekhaldi, A. & Gouri, R. (2016). Submicron Particles Trajectory and Collection Efficiency in a Miniature Planar DBD-ESP: Theoretical Model and Experimental Validation, Journal of Electrostatics, 82 (x): 38–47. doi.org/10.1016/j.elstat.2016.05.004
  • Zouzou, N. & Moreau, E. (2011). Effect of a Filamentary Discharge on the Particle Trajectory in a Plane-to-Plane DBD Precipitator, Journal of Physics D: Applied Physics 44 (28), 1–6. doi.org/10.1088/0022-3727/44/28/285204
  • Zouzou, N., Dramane, B., Moreau, E. & Touchard, G. (2011). EHD Flow and Collection Efficiency of a DBD ESP in Wire-to-Plane and Plane-to-Plane Configurations. IEEE Transactions on Industry Applications, 47(1), 336–343. doi.org/10.1109/tia.2010.2091473
  • Zouzou, N., Dramane, B., Moreau, E., Touchard & G. (2011). EHD Flow and Collection Efficiency of a DBD ESP in Wire-to-Plane and Plane-to-Plane Configurations, IEEE Transactions on Industry Applications, 47 (1), 336–343. doi.org/10.1109/TIA.2010.2091473
There are 42 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Orçun Ekin 0000-0002-6779-885X

Publication Date December 3, 2025
Submission Date June 25, 2025
Acceptance Date October 10, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Ekin, O. (2025). A 3D NUMERICAL INVESTIGATION ON THE CHARGED PARTICLE BEHAVIOR IN WIRE-TO-PLATE DBD ELECTROSTATIC PRECIPITATORS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1843-1860.