Research Article
BibTex RIS Cite

A CURRENT APPROACH TO OBJECTIVE CRITERIA WEIGHTING: THE HELLINGER DISTANCE METHOD (HDM)

Year 2025, Volume: 28 Issue: 4, 1861 - 1885, 03.12.2025

Abstract

This study introduces the Hellinger Distance Method (HDM), a novel objective weighting approach for multi-criteria decision-making (MCDM) problems. HDM employs a dual-layered structure by simultaneously accounting for the internal variation of each criterion (via standard deviation) and the distributional dissimilarities between criteria (via the Hellinger Distance). The method was applied to assess innovation performance across seven countries using the 2024 Global Innovation Index data. Rank Reversal analysis demonstrated that HDM maintains stable alternative rankings following systematic criterion removal, indicating robust sensitivity. Further comparisons with established objective weighting methods ENTROPY, CRITIC, SD, SVP, LOPCOW, and MEREC revealed strong alignment with ENTROPY and SVP, reinforcing HDM’s reliability and methodological soundness. In addition, simulation-based analyses involving ten decision matrix scenarios confirmed the statistical homogeneity and stability of HDM-derived weights, as validated by ANOM and Levene’s tests. These findings highlight the method’s consistent performance across varied data conditions. Overall, HDM emerges as a reliable, theoretically grounded, and practically effective weighting technique, offering a valuable contribution to both the academic literature and real-world MCDM applications.

References

  • Aksakal, E., & Çalışkan, E. (2020). Olimpiyatlarda aday şehirlerin seçim sürecinde dikkate alınacak kriterlerin entropi yöntemi ile değerlendirilmesi. Çok kriterli karar verme yöntemleri MS Excel çözümlü uygulamalar. In Kabak M, Çınar Y. (Eds.) (pp. 169-179). Ankara: Nobel Akademik Yayıncılık.
  • Alinezhad, A., & Khalili, J. (2019). New Methods and Applications in Multiple Attribute Decision Making (MADM). Heidelberg: Springer International Publishing.
  • Alpar, R. (2020). Uygulamalı Çok Değişkenli İstatistiksel Yöntemler. Ankara: Detay Yayıncılık.
  • Amimour, A., Belaide, K., & Hili, O. (2022). Minimum hellinger distance estimates for a periodically time-varying long memory parameter. Comptes Rendus Mathématique, 360, 1153-1162. https://doi.org/10.5802/crmath.381.
  • Anand, A., Agarwal, M., & Aggrawal, D. (2022). Multiple criteria decision-making methods: Applications for managerial discretion. Berlin : Walter De Gruyder GmbH.
  • Angadi, A., & Gorripati, S. K. (2025). A privacy preserving collaborative filtering approach using Hellinger distance similarity metric for high dimensional dataset. Home International Journal of Business Information Systems, 48(4), 555-572. https://doi.org/10.1504/IJBIS.2025.145569.
  • Asker, V., & Kılınç, Z. (2025). Financial and Operational Performance Analysis Using LOPCOW Based MARCOS Method: A Case Study of the Asian Airline Market. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 12(1), 246-270. https://doi.org/10.30798/makuiibf.1495165.
  • Ayçin, E. (2020). Çok Kriterli Karar Verme. Ankara: Nobel Akademik Yayıncılık.
  • Basu, A., Shioya, H., & Park, C. (2011). Statistical inference: The Minimum Distance Approach. Boca Raton: CRC Press.
  • Baş, F. (2021). Çok Kriterli Karar Verme Yöntemlerinde Kriter Ağırlıklarının Belirlenmesi. Ankara: Nobel Bilimsel.
  • Bircan, H. (2020). Çok Kriterli Karar Verme Problemlerinde Kriter Ağırlıklandırma Yöntemleri. Ankara: Nobel Akademik Yayıncılık.
  • Can, A. (2018). SPSS ile Bilimsel Araştırma Sürecinde Nicel Veri Analizi. Ankara: Pegem Akademi Yayıncılık.
  • Dasgupta, A., Sen, B., & Karthikeyan, A. (2025). Entropy topsis based material selection for sustainable polymer composite: An mcdm framework promoting circular economy. Journal of Elastomers & Plastics, 57(5) 1-15. https://doi.org/10.1177/00952443251331171.
  • Demir, G., & Arslan, R. (2022). Sensitivity analysis in multi-criteria decision-making problems. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(3), 1025-1056.
  • Demir, G., Özyalçın, A. T., & Bircan, H. (2021). Çok kriterli karar verme yöntemleri ve çkkv yazılımı ile problem çözümü. Ankara: Nobel Akademik Yayıncılık.
  • Deng, F., & Vidyashankar, A. N. (2025). Private minimum Hellinger distance estimation via Hellinger distance differential privacy, arXiv Preprint, 2501.14974, 1-71. https://doi.org/10.48550/arXiv.2501.14974
  • Dey, S., Mitra, G., Biswas, S., & Pamucar, D. (2025). Evaluation of fim performance under merger and acquisition effect: An integrated lopcow-piv approach. Decision Making: Applications in Management and Engineering, 8(1), 588-614. https://doi.org/10.31181/dmame8120251448.
  • Diakoulaki , D., Mavrotas , G., & Papayannakis , L. (1995). Determining Objective Weights In Multiple Criteria Problems: The Critic Method. Computers and Operations Research, 22(7), 763-770.
  • Dinçer, S. E. (2019). Çok Kriterli Karar Alma. İstanbul: Gece Akademi.
  • Ding, B., Karunamuni, R. J., & Wua, J. (2025). Minimum profile Hellinger distance estimation of general covariate models. Computational Statistics and Data Analysis, 202, 1-19. https://doi.org/10.1016/j.csda.2024.108054.
  • Ding, R., & Mullhaupt, A. (2023). Empirical squared hellinger distance estimator and generalizations to a family of a-divergence estimators. Entropy, 25, 1-24. https://doi.org/10.3390/e25040612.
  • Ditzler, G., & Polikar, R. (2011). Hellinger distance based drift detection for nonstationary environments. IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), (pp. 41-48. https://doi.org/ 10.1109/CIDUE.2011.5948491). Paris.
  • Doğan, H., & Uludağ, A. S. (2021). Üretim Yönetiminde Çok Kriterli Karar Verme Yöntemleri: Literatür, Teori ve Uygulama. Ankara: Nobel Akademik Yayıncılık.
  • Dwivedi, P. P., & Sharma, D. K. (2022). A pervasive model to evaluate and ranking the best 5g mobile by cross-entropy and topsis method. Comminication Systems, 38(4), 1-7. https://doi.org/10.1002/dac.6134.
  • Durdu, D. (2025). Evaluating financial performance with spc-lopcow-marcos hybrid methodology: A case study for firms listed in BIST sustainability index. Knowledge and Decision Systems with Applications, 1, 92-111. https://doi.org/10.59543/kadsa.v1i.13879.
  • Ecer, F. (2020). Çok Kriterli Karar Verme. Ankara: Seçkin Yayıncılık.
  • Ecer, F., & Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, 112, 102690. https://doi.org/10.1016/j.omega.2022.102690.
  • Erbey, A., Fidan, Ü., & Gündüz, C. (2025). A robust hybrid weighting scheme based on IQRBOW and Entropy for MCDM: Stability and advantage criteria in the VIKOR framework. Entropy, 27, 1-18. https://doi.org/10.3390/e27080867.
  • Fan, J., Han, Y., & Wu, M. (2025). CRITIC-TOPSIS method based on pairwise preference graph neural similarity and ıts application in vehicle selection. J. Fuzzy Syst, https://doi.org/10.1007/s40815-024-01956-0.
  • Harrou, F., Madakyarub, M., & Sun, Y. (2017). Improved nonlinear fault detection strategy based on the Hellinger distance metric: Plug flow reactor monitoring. Energy and Buildings, 143, 149-161. http://dx.doi.org/doi:10.1016/j.enbuild.2017.03.033.
  • Hayran, O., & Özbek, H. (2019). Sağlık Bilimlerinde Araştırma ve İstatistik Yöntemler. Ankara: Nobel Yayıncılık.
  • Ilham, N. I., Dahlan, N. Y., & Hussin, M. Z. (2024). Optimizing solar PV investments: A comprehensive decision making index using CRITIC and TOPSIS. Renewable Energy Focus, 49(1-30), https://doi.org/10.1016/j.ref.2024.100551.
  • Jameel, T., Yasin, Y., & Riaz, M. (2025). An ıntegrated hybrid mcdm framework for renewable energy prioritization in sustainable development. Spectrum of Decision Making and Applications, 3(1), 124-150. https://doi.org/10.31181/sdmap31202640.
  • Kalaycı, Ş. (2024). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri. Ankara: Asil Yayıncılık.
  • Karagöz, Y. (2015). SPSS 22 Uygulamalı Biyoistatistik. Ankara: Nobel Akademik Yayııncılık.
  • Karagöz, Y. (2019). SPSS - AMOS - META Uygulamalı İstatistiksel Analizler. Ankara: Nobel Akademik .
  • Keleş, N. (2023). Uygulamalarla Klasik ve Güncel Karar Verme Yöntemleri. Ankara: Atlas Akademik Basım Yayın Dağıtım.
  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E., Turskis, Z., & Antucheviciene, J. (2021). Determination of ObjectiveWeights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(525), 1-20. https://doi.org/10.3390/sym13040525.
  • Kilmen, S. (2020). Eğitim Araştırmacıları İçin Spss Uygulamalı İstatistik. Ankara: Anı Yayıncılık.
  • Kini, K., Harrou, F., Madakyaru, M., Sun, Y., & Menon, M. K. (2024). PLS-based hellinger distance method for fault detection in chemical. Eng. Res. Express, 6, 1-17. https://doi.org/10.1088/2631-8695/ad6af4.
  • Krishnan, A. R. (2025). Research trends in criteria importance through intercriteria correlation (CRITIC) method: a visual analysis of bibliographic data using the Tableau software. Information Discovery and Delivery, 53(2), 233–247. https://doi.org/10.1108/IDD-02-2024-0030.
  • Kumar, S., Kumar, P. A., Bharati, K., Patnaik, L., Maity, S. R., & Łepicka, M. (2025). Coating material selection for bulk metal forming dies: A merec-integrated approach with multiple mcdm methods. Int J Interact Des Manuf, 19, 4055–4070. https://doi.org/10.1007/s12008-024-01983-z.
  • Kumar, V., Vasan, K., & Kumar, S. (2025). Exact mean and variance of the squared Hellinger distance for random density matrices. American Physical Society, 111(5), 1-10. https://doi/10.1103/PhysRevE.111.054204.
  • Li, C., Huang, B., & Qian, F. (2015). Hellinger distance based probability distribution approach to performance monitoring of nonlinear control systems. Chinese Journal of Chemical Engineering, 23(12), 1945-1950. https://doi.org/10.1016/j.cjche.2015.10.005.
  • Li, X., Liu, Z., Han, X., Liu, N., & Yuan, W. (2023). An Intuitionistic Fuzzy Version of Hellinger Distance Measure and Its Application to Decision-Making Process. Symmetry, 15, 1-16. https://doi.org/10.3390/sym15020500.
  • Liese, F., & Miescke, K. J. (2008). Statistical decision theory: Estimation, testing, and selection. New York: Springer.
  • Liu, Z. (2024). Hellinger distance measures on pythagorean fuzzy environment via their applications. International Journal of Knowledge-Based and Intelligent Engineering Systems. 28(2), 211-229. https://doi.org/10.3233/KES-230150
  • Liu, G., Guo, J., Wang, Y., Liu, X., Ma, W., & Zhang, R. (2024). Local image segmentation model via Hellinger distance. The Visual Computer, 40, 7871–7885. https://doi.org/10.1007/s00371-023-03213-1
  • Lopez, L. M., Ishizaka, A., Qin , J., & Alvarez-Carrillo, P. A. (2023). Multi-Criteria Decision-Making Sorting Methods: Applications to Real-World Problems. Amsterdam: Elsevier Academic Press.
  • Lyon, R. J., Brooke, J. M., Knowles, J. D., & Stappers, B. W. (2014). Hellinger Distance Trees for Imbalanced Streams. 22nd International Conference on Pattern Recognition, (pp. 1969-1974). Stockholm.
  • Mastilo, Z., Štilić, A., Gligović, D., & Puška, A. (2024). Assessing the Banking Sector of Bosnia and Herzegovina: An Analysis of Financial Indicators through the MEREC and MARCOS Methods. Journal of Central Banking Theory and Practice, 1(1), 167-197. https://doi.org/10.2478/jcbtp-2024-0008.
  • Mishra, A. R., Pamucar, D., Rani , P., & Hezam , I. M. (2025). Single-valued neutrosophic distance measure-based merec-rancom-wisp for solving sustainable energy storage technology problem. Cognitive Computation, 17(87), s. https://doi.org/10.1007/s12559-025-10437-x.
  • N’dri, A., & Hili, O. (2013). Hellinger Distance Estimation of Strongly Dependent Multi-Dimensional Gaussian Processes. International Journal of Statistics and Probability, 2(3), 70-84.
  • Nikulin, M. S. (2001). Hellinger distance. Encyclopedia of Mathematics. In M. S. Nikulin (Eds.). Berlin: EMS Press. Odu, G. O. (2019). Weighting Methods for Multi-Criteria Decision Making Technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449-1457. DOİ: 10.4314/jasem.v23i8.7.
  • Özdamar, K. (2019). Paket Programlar ile İstatistiksel Veri Analizi Cilt:1. Eskişehir: Nisan Kitabevi.
  • Özekenci, E. K. (2025). Evaluation of the logistics performance index of oecd countries based on hybrid mcdm methods. Marmara University Journal of Economic and Administrative Sciences, 47(1), 47-76. https://doi.org/10.14780/muiibd.1469898.
  • Öztel, A., & Alp, İ. (2020). Çok Kriterli Karar Verme Yöntemi Seçiminde Yeni Bir Yaklaşım. İstanbul: Kriter Yayıncılık.
  • Pandey, S. K., & Sinha, D. (2024). A novel approach for detection of DoS / DDoS attack in network. Informatica,, 48, 147-166. https://doi.org/10.31449/inf.v48i20.5692.
  • Pardo, L. (2006). Statistical inference based on divergence measures. Boca Raton: Chapman and Hall/CRC. Patra, R. K., Mandal, A., & Basu, A. (2008). Minimum Hellinger Distance Estimation with Inlier. Sankhya : The Indian Journal of Statistics, 70-8(2), 310-322.
  • Ristono, A., Wahyuningsih, T., & Muhsin, A. (2025). Comprehensive Method for Supplier Selection in The Indonesian Leather Industry Considering Sustainable Development Goals Criteria. SDGsReview, 20, 1-20. https://doi.org/10.47172/2965-730X.SDGsReview.v5.n02.pe02994.
  • Salaj, & Kumari, M. (2025). A multi-criteria approach to blockchain in supply chain management assessment: entropy-CRITIC weight method and MCDM for enhanced decision support. International Journal of System Assurance Engineering and Management, 16, 1830–1843. https://doi.org/10.1007/s13198-025-02764-x.
  • Setiawansyah. (2025). Improving Decision Accuracy Through LOPCOW Weighting and AROMAN Methods in Retail Store Location Selection. Jurnal Ilmiah Informatika Dan Ilmu Komputer (Jima-Ilkom), 4(1), 77-88. https://doi.org/10.58602/jima-ilkom.v4i1.57.
  • Shanmugasundar, G., Sapkota, G., Cep, R., & Kalita, K. (2022). Application of MEREC in Multi-Criteria Selection of Optimal. Processes, 10, 1-16. https://doi.org/10.3390/pr10061172.
  • Sristi, N. A., Zaman, P. B., & Dhar, N. R. (2024). Evaluation of entropy-coupled multi-criteria decision-making. Heliyon, 10, 1-25. https://doi.org/10.1016/j.heliyon.2024.e38299.
  • Şahin, M. (2023). Çok Kriterli Karar Verme Kriter Ağırlıklandırma Yöntemleri. Ankara: Nobel Akademik . Taniguchi, M., & Xue, Y. (2024). Hellinger distance estimation for nonregular spectra. Teoriya Veroyatnostei i ee Primeneniya, 69(1), 188–200.
  • Tayalı, H. A., & Timor, M. (2017). Ranking with Statistical Variance Procedure based Analytic Hierarchy Process. Acta Infologica, 1(1), 31-38.
  • Torra, V., Narukawa, Y., Sugeno, M., & Carlson, M. (2013). Hellinger distance for fuzzy measures. 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013) (pp. 541-546). Milan: Atlantis Press.
  • Ulutaş, A., & Topal, A. (2020). Bütünleştirilmiş Çok Kriterli Karar Verme Yöntemlerinin Üretim Sektörü Uygulamaları. Ankara: Akademisyen Yayınevi.
  • Wang, J., Darwis, D., Gunawan, R. D., & Ariany, F. (2025). Optimizing E-Commerce Platform Selection Using Root Assessment Method and MEREC Weighting. Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika), 6(1), 1-12. https://doi.org/10.33365/jatika.v6i1.6.
  • World Intellectual Property Organization (WIPO) (2024), Global Innovation Index 2024: Unlocking the Promise of Social Entrepreneurship, Geneva: WIPO.
  • Wu, J., & Cui, H. (2024). Model-free feature screening based on Hellinger distance for ultrahigh dimensional data. 2. Statistical Papers, 65, 5903–5930. https://doi.org/10.1007/s00362-024-01615-4.
  • Wu, J., & Karunamuni, R. J. (2014). Profile hellinger distance estimation. A Journal of Theoretical and Applied Statistics, 49(4), 1-30. https://doi.org/10.1080/02331888.2014.946928.
  • Yazdi, A. K., Tan, Y., Birau, R., Frank, D., & Pamučar, D. (2025). Sustainable solutions: using MCDM to choose the best location for green energy projects. International Journal of Energy Sector Management, 19(1), 146–180. https://doi.org/10.1108/IJESM-01-2024-0005.
  • Zainol, A. Z., Saian, R., Kin, T. Y., Razali, M. M., & Bakar, S. A. (2023). An Enhanced Ant Colony Optimisation Algorithm with the Hellinger Distance for Shariah-Compliant Securities Companies Bankruptcy Prediction. Journal of Information and Communication Technology, 23(1), 1-24.
  • Zardari, N. H., Ahmed, K., Shirazi, S. M., & Yusop, Z. B. (2014). Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Heilderberg, New York, Dortrecht, London: Springer.

NESNEL KRİTER AĞIRLIKLANDIRMAYA GÜNCEL BİR YAKLAŞIM: HELLİNGER MESAFE YÖNTEMİ (HDM)

Year 2025, Volume: 28 Issue: 4, 1861 - 1885, 03.12.2025

Abstract

Bu çalışma, çok kriterli karar verme (ÇKKV) problemleri için nesnel bir ağırlıklandırma yöntemi olan Hellinger Mesafe Yöntemi’ni (HDM) literatüre kazandırmaktadır. HDM, her bir kriterin içsel varyasyonunu (standart sapma) ve kriterler arasındaki dağılımsal farklılıkları (Hellinger Mesafesi) eş zamanlı dikkate alan iki katmanlı bir yapı sunmaktadır. Yöntem, 2024 Küresel İnovasyon Endeksi verileriyle yedi ülkenin inovasyon performanslarını değerlendirmek amacıyla uygulanmıştır. Duyarlılığı test etmek amacıyla gerçekleştirilen Sıra Terslenmesi analizinde, sistematik kriter çıkarımı sonrasında sıralamalarda anlamlı bir değişim gözlenmemiştir; bu durum HDM’nin kararlılığını göstermektedir. ENTROPY, CRITIC, SD, SVP, LOPCOW ve MEREC yöntemleriyle yapılan karşılaştırmalar, HDM’nin özellikle ENTROPY ve SVP ile yüksek uyum gösterdiğini ortaya koyarak güvenilirliğini doğrulamaktadır. On senaryolu simülasyon analizleri ise, ANOM ve Levene testleri aracılığıyla elde edilen ağırlıkların değişen veri setlerine rağmen istatistiksel olarak homojen kaldığını göstermektedir. Bulgular, HDM’nin farklı veri koşullarında dahi istikrarlı sonuçlar sunduğunu ve hem kuramsal hem de uygulamalı olarak güçlü bir katkı sağladığını göstermektedir.

References

  • Aksakal, E., & Çalışkan, E. (2020). Olimpiyatlarda aday şehirlerin seçim sürecinde dikkate alınacak kriterlerin entropi yöntemi ile değerlendirilmesi. Çok kriterli karar verme yöntemleri MS Excel çözümlü uygulamalar. In Kabak M, Çınar Y. (Eds.) (pp. 169-179). Ankara: Nobel Akademik Yayıncılık.
  • Alinezhad, A., & Khalili, J. (2019). New Methods and Applications in Multiple Attribute Decision Making (MADM). Heidelberg: Springer International Publishing.
  • Alpar, R. (2020). Uygulamalı Çok Değişkenli İstatistiksel Yöntemler. Ankara: Detay Yayıncılık.
  • Amimour, A., Belaide, K., & Hili, O. (2022). Minimum hellinger distance estimates for a periodically time-varying long memory parameter. Comptes Rendus Mathématique, 360, 1153-1162. https://doi.org/10.5802/crmath.381.
  • Anand, A., Agarwal, M., & Aggrawal, D. (2022). Multiple criteria decision-making methods: Applications for managerial discretion. Berlin : Walter De Gruyder GmbH.
  • Angadi, A., & Gorripati, S. K. (2025). A privacy preserving collaborative filtering approach using Hellinger distance similarity metric for high dimensional dataset. Home International Journal of Business Information Systems, 48(4), 555-572. https://doi.org/10.1504/IJBIS.2025.145569.
  • Asker, V., & Kılınç, Z. (2025). Financial and Operational Performance Analysis Using LOPCOW Based MARCOS Method: A Case Study of the Asian Airline Market. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 12(1), 246-270. https://doi.org/10.30798/makuiibf.1495165.
  • Ayçin, E. (2020). Çok Kriterli Karar Verme. Ankara: Nobel Akademik Yayıncılık.
  • Basu, A., Shioya, H., & Park, C. (2011). Statistical inference: The Minimum Distance Approach. Boca Raton: CRC Press.
  • Baş, F. (2021). Çok Kriterli Karar Verme Yöntemlerinde Kriter Ağırlıklarının Belirlenmesi. Ankara: Nobel Bilimsel.
  • Bircan, H. (2020). Çok Kriterli Karar Verme Problemlerinde Kriter Ağırlıklandırma Yöntemleri. Ankara: Nobel Akademik Yayıncılık.
  • Can, A. (2018). SPSS ile Bilimsel Araştırma Sürecinde Nicel Veri Analizi. Ankara: Pegem Akademi Yayıncılık.
  • Dasgupta, A., Sen, B., & Karthikeyan, A. (2025). Entropy topsis based material selection for sustainable polymer composite: An mcdm framework promoting circular economy. Journal of Elastomers & Plastics, 57(5) 1-15. https://doi.org/10.1177/00952443251331171.
  • Demir, G., & Arslan, R. (2022). Sensitivity analysis in multi-criteria decision-making problems. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(3), 1025-1056.
  • Demir, G., Özyalçın, A. T., & Bircan, H. (2021). Çok kriterli karar verme yöntemleri ve çkkv yazılımı ile problem çözümü. Ankara: Nobel Akademik Yayıncılık.
  • Deng, F., & Vidyashankar, A. N. (2025). Private minimum Hellinger distance estimation via Hellinger distance differential privacy, arXiv Preprint, 2501.14974, 1-71. https://doi.org/10.48550/arXiv.2501.14974
  • Dey, S., Mitra, G., Biswas, S., & Pamucar, D. (2025). Evaluation of fim performance under merger and acquisition effect: An integrated lopcow-piv approach. Decision Making: Applications in Management and Engineering, 8(1), 588-614. https://doi.org/10.31181/dmame8120251448.
  • Diakoulaki , D., Mavrotas , G., & Papayannakis , L. (1995). Determining Objective Weights In Multiple Criteria Problems: The Critic Method. Computers and Operations Research, 22(7), 763-770.
  • Dinçer, S. E. (2019). Çok Kriterli Karar Alma. İstanbul: Gece Akademi.
  • Ding, B., Karunamuni, R. J., & Wua, J. (2025). Minimum profile Hellinger distance estimation of general covariate models. Computational Statistics and Data Analysis, 202, 1-19. https://doi.org/10.1016/j.csda.2024.108054.
  • Ding, R., & Mullhaupt, A. (2023). Empirical squared hellinger distance estimator and generalizations to a family of a-divergence estimators. Entropy, 25, 1-24. https://doi.org/10.3390/e25040612.
  • Ditzler, G., & Polikar, R. (2011). Hellinger distance based drift detection for nonstationary environments. IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), (pp. 41-48. https://doi.org/ 10.1109/CIDUE.2011.5948491). Paris.
  • Doğan, H., & Uludağ, A. S. (2021). Üretim Yönetiminde Çok Kriterli Karar Verme Yöntemleri: Literatür, Teori ve Uygulama. Ankara: Nobel Akademik Yayıncılık.
  • Dwivedi, P. P., & Sharma, D. K. (2022). A pervasive model to evaluate and ranking the best 5g mobile by cross-entropy and topsis method. Comminication Systems, 38(4), 1-7. https://doi.org/10.1002/dac.6134.
  • Durdu, D. (2025). Evaluating financial performance with spc-lopcow-marcos hybrid methodology: A case study for firms listed in BIST sustainability index. Knowledge and Decision Systems with Applications, 1, 92-111. https://doi.org/10.59543/kadsa.v1i.13879.
  • Ecer, F. (2020). Çok Kriterli Karar Verme. Ankara: Seçkin Yayıncılık.
  • Ecer, F., & Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, 112, 102690. https://doi.org/10.1016/j.omega.2022.102690.
  • Erbey, A., Fidan, Ü., & Gündüz, C. (2025). A robust hybrid weighting scheme based on IQRBOW and Entropy for MCDM: Stability and advantage criteria in the VIKOR framework. Entropy, 27, 1-18. https://doi.org/10.3390/e27080867.
  • Fan, J., Han, Y., & Wu, M. (2025). CRITIC-TOPSIS method based on pairwise preference graph neural similarity and ıts application in vehicle selection. J. Fuzzy Syst, https://doi.org/10.1007/s40815-024-01956-0.
  • Harrou, F., Madakyarub, M., & Sun, Y. (2017). Improved nonlinear fault detection strategy based on the Hellinger distance metric: Plug flow reactor monitoring. Energy and Buildings, 143, 149-161. http://dx.doi.org/doi:10.1016/j.enbuild.2017.03.033.
  • Hayran, O., & Özbek, H. (2019). Sağlık Bilimlerinde Araştırma ve İstatistik Yöntemler. Ankara: Nobel Yayıncılık.
  • Ilham, N. I., Dahlan, N. Y., & Hussin, M. Z. (2024). Optimizing solar PV investments: A comprehensive decision making index using CRITIC and TOPSIS. Renewable Energy Focus, 49(1-30), https://doi.org/10.1016/j.ref.2024.100551.
  • Jameel, T., Yasin, Y., & Riaz, M. (2025). An ıntegrated hybrid mcdm framework for renewable energy prioritization in sustainable development. Spectrum of Decision Making and Applications, 3(1), 124-150. https://doi.org/10.31181/sdmap31202640.
  • Kalaycı, Ş. (2024). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri. Ankara: Asil Yayıncılık.
  • Karagöz, Y. (2015). SPSS 22 Uygulamalı Biyoistatistik. Ankara: Nobel Akademik Yayııncılık.
  • Karagöz, Y. (2019). SPSS - AMOS - META Uygulamalı İstatistiksel Analizler. Ankara: Nobel Akademik .
  • Keleş, N. (2023). Uygulamalarla Klasik ve Güncel Karar Verme Yöntemleri. Ankara: Atlas Akademik Basım Yayın Dağıtım.
  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E., Turskis, Z., & Antucheviciene, J. (2021). Determination of ObjectiveWeights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(525), 1-20. https://doi.org/10.3390/sym13040525.
  • Kilmen, S. (2020). Eğitim Araştırmacıları İçin Spss Uygulamalı İstatistik. Ankara: Anı Yayıncılık.
  • Kini, K., Harrou, F., Madakyaru, M., Sun, Y., & Menon, M. K. (2024). PLS-based hellinger distance method for fault detection in chemical. Eng. Res. Express, 6, 1-17. https://doi.org/10.1088/2631-8695/ad6af4.
  • Krishnan, A. R. (2025). Research trends in criteria importance through intercriteria correlation (CRITIC) method: a visual analysis of bibliographic data using the Tableau software. Information Discovery and Delivery, 53(2), 233–247. https://doi.org/10.1108/IDD-02-2024-0030.
  • Kumar, S., Kumar, P. A., Bharati, K., Patnaik, L., Maity, S. R., & Łepicka, M. (2025). Coating material selection for bulk metal forming dies: A merec-integrated approach with multiple mcdm methods. Int J Interact Des Manuf, 19, 4055–4070. https://doi.org/10.1007/s12008-024-01983-z.
  • Kumar, V., Vasan, K., & Kumar, S. (2025). Exact mean and variance of the squared Hellinger distance for random density matrices. American Physical Society, 111(5), 1-10. https://doi/10.1103/PhysRevE.111.054204.
  • Li, C., Huang, B., & Qian, F. (2015). Hellinger distance based probability distribution approach to performance monitoring of nonlinear control systems. Chinese Journal of Chemical Engineering, 23(12), 1945-1950. https://doi.org/10.1016/j.cjche.2015.10.005.
  • Li, X., Liu, Z., Han, X., Liu, N., & Yuan, W. (2023). An Intuitionistic Fuzzy Version of Hellinger Distance Measure and Its Application to Decision-Making Process. Symmetry, 15, 1-16. https://doi.org/10.3390/sym15020500.
  • Liese, F., & Miescke, K. J. (2008). Statistical decision theory: Estimation, testing, and selection. New York: Springer.
  • Liu, Z. (2024). Hellinger distance measures on pythagorean fuzzy environment via their applications. International Journal of Knowledge-Based and Intelligent Engineering Systems. 28(2), 211-229. https://doi.org/10.3233/KES-230150
  • Liu, G., Guo, J., Wang, Y., Liu, X., Ma, W., & Zhang, R. (2024). Local image segmentation model via Hellinger distance. The Visual Computer, 40, 7871–7885. https://doi.org/10.1007/s00371-023-03213-1
  • Lopez, L. M., Ishizaka, A., Qin , J., & Alvarez-Carrillo, P. A. (2023). Multi-Criteria Decision-Making Sorting Methods: Applications to Real-World Problems. Amsterdam: Elsevier Academic Press.
  • Lyon, R. J., Brooke, J. M., Knowles, J. D., & Stappers, B. W. (2014). Hellinger Distance Trees for Imbalanced Streams. 22nd International Conference on Pattern Recognition, (pp. 1969-1974). Stockholm.
  • Mastilo, Z., Štilić, A., Gligović, D., & Puška, A. (2024). Assessing the Banking Sector of Bosnia and Herzegovina: An Analysis of Financial Indicators through the MEREC and MARCOS Methods. Journal of Central Banking Theory and Practice, 1(1), 167-197. https://doi.org/10.2478/jcbtp-2024-0008.
  • Mishra, A. R., Pamucar, D., Rani , P., & Hezam , I. M. (2025). Single-valued neutrosophic distance measure-based merec-rancom-wisp for solving sustainable energy storage technology problem. Cognitive Computation, 17(87), s. https://doi.org/10.1007/s12559-025-10437-x.
  • N’dri, A., & Hili, O. (2013). Hellinger Distance Estimation of Strongly Dependent Multi-Dimensional Gaussian Processes. International Journal of Statistics and Probability, 2(3), 70-84.
  • Nikulin, M. S. (2001). Hellinger distance. Encyclopedia of Mathematics. In M. S. Nikulin (Eds.). Berlin: EMS Press. Odu, G. O. (2019). Weighting Methods for Multi-Criteria Decision Making Technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449-1457. DOİ: 10.4314/jasem.v23i8.7.
  • Özdamar, K. (2019). Paket Programlar ile İstatistiksel Veri Analizi Cilt:1. Eskişehir: Nisan Kitabevi.
  • Özekenci, E. K. (2025). Evaluation of the logistics performance index of oecd countries based on hybrid mcdm methods. Marmara University Journal of Economic and Administrative Sciences, 47(1), 47-76. https://doi.org/10.14780/muiibd.1469898.
  • Öztel, A., & Alp, İ. (2020). Çok Kriterli Karar Verme Yöntemi Seçiminde Yeni Bir Yaklaşım. İstanbul: Kriter Yayıncılık.
  • Pandey, S. K., & Sinha, D. (2024). A novel approach for detection of DoS / DDoS attack in network. Informatica,, 48, 147-166. https://doi.org/10.31449/inf.v48i20.5692.
  • Pardo, L. (2006). Statistical inference based on divergence measures. Boca Raton: Chapman and Hall/CRC. Patra, R. K., Mandal, A., & Basu, A. (2008). Minimum Hellinger Distance Estimation with Inlier. Sankhya : The Indian Journal of Statistics, 70-8(2), 310-322.
  • Ristono, A., Wahyuningsih, T., & Muhsin, A. (2025). Comprehensive Method for Supplier Selection in The Indonesian Leather Industry Considering Sustainable Development Goals Criteria. SDGsReview, 20, 1-20. https://doi.org/10.47172/2965-730X.SDGsReview.v5.n02.pe02994.
  • Salaj, & Kumari, M. (2025). A multi-criteria approach to blockchain in supply chain management assessment: entropy-CRITIC weight method and MCDM for enhanced decision support. International Journal of System Assurance Engineering and Management, 16, 1830–1843. https://doi.org/10.1007/s13198-025-02764-x.
  • Setiawansyah. (2025). Improving Decision Accuracy Through LOPCOW Weighting and AROMAN Methods in Retail Store Location Selection. Jurnal Ilmiah Informatika Dan Ilmu Komputer (Jima-Ilkom), 4(1), 77-88. https://doi.org/10.58602/jima-ilkom.v4i1.57.
  • Shanmugasundar, G., Sapkota, G., Cep, R., & Kalita, K. (2022). Application of MEREC in Multi-Criteria Selection of Optimal. Processes, 10, 1-16. https://doi.org/10.3390/pr10061172.
  • Sristi, N. A., Zaman, P. B., & Dhar, N. R. (2024). Evaluation of entropy-coupled multi-criteria decision-making. Heliyon, 10, 1-25. https://doi.org/10.1016/j.heliyon.2024.e38299.
  • Şahin, M. (2023). Çok Kriterli Karar Verme Kriter Ağırlıklandırma Yöntemleri. Ankara: Nobel Akademik . Taniguchi, M., & Xue, Y. (2024). Hellinger distance estimation for nonregular spectra. Teoriya Veroyatnostei i ee Primeneniya, 69(1), 188–200.
  • Tayalı, H. A., & Timor, M. (2017). Ranking with Statistical Variance Procedure based Analytic Hierarchy Process. Acta Infologica, 1(1), 31-38.
  • Torra, V., Narukawa, Y., Sugeno, M., & Carlson, M. (2013). Hellinger distance for fuzzy measures. 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013) (pp. 541-546). Milan: Atlantis Press.
  • Ulutaş, A., & Topal, A. (2020). Bütünleştirilmiş Çok Kriterli Karar Verme Yöntemlerinin Üretim Sektörü Uygulamaları. Ankara: Akademisyen Yayınevi.
  • Wang, J., Darwis, D., Gunawan, R. D., & Ariany, F. (2025). Optimizing E-Commerce Platform Selection Using Root Assessment Method and MEREC Weighting. Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika), 6(1), 1-12. https://doi.org/10.33365/jatika.v6i1.6.
  • World Intellectual Property Organization (WIPO) (2024), Global Innovation Index 2024: Unlocking the Promise of Social Entrepreneurship, Geneva: WIPO.
  • Wu, J., & Cui, H. (2024). Model-free feature screening based on Hellinger distance for ultrahigh dimensional data. 2. Statistical Papers, 65, 5903–5930. https://doi.org/10.1007/s00362-024-01615-4.
  • Wu, J., & Karunamuni, R. J. (2014). Profile hellinger distance estimation. A Journal of Theoretical and Applied Statistics, 49(4), 1-30. https://doi.org/10.1080/02331888.2014.946928.
  • Yazdi, A. K., Tan, Y., Birau, R., Frank, D., & Pamučar, D. (2025). Sustainable solutions: using MCDM to choose the best location for green energy projects. International Journal of Energy Sector Management, 19(1), 146–180. https://doi.org/10.1108/IJESM-01-2024-0005.
  • Zainol, A. Z., Saian, R., Kin, T. Y., Razali, M. M., & Bakar, S. A. (2023). An Enhanced Ant Colony Optimisation Algorithm with the Hellinger Distance for Shariah-Compliant Securities Companies Bankruptcy Prediction. Journal of Information and Communication Technology, 23(1), 1-24.
  • Zardari, N. H., Ahmed, K., Shirazi, S. M., & Yusop, Z. B. (2014). Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Heilderberg, New York, Dortrecht, London: Springer.
There are 75 citations in total.

Details

Primary Language English
Subjects Multiple Criteria Decision Making
Journal Section Research Article
Authors

Furkan Fahri Altıntaş 0000-0002-0161-5862

Publication Date December 3, 2025
Submission Date June 30, 2025
Acceptance Date September 19, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Altıntaş, F. F. (2025). A CURRENT APPROACH TO OBJECTIVE CRITERIA WEIGHTING: THE HELLINGER DISTANCE METHOD (HDM). Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1861-1885.