DETERMINATION OF THE POTENTIAL OF LOCAL LACTIC ACID BACTERIA STRAINS IN MICROBIAL NANOPARTICLE SYNTHESIS
Year 2025,
Volume: 28 Issue: 4, 1916 - 1927, 03.12.2025
Özgül Yazar
,
Mehmet Tokatlı
Abstract
This study aimed to determine the potential of lactic acid bacteria (LAB) strains for the microbial synthesis of titanium, iron, and silver metal nanoparticles using metal precursors such as K2TiF6, TiO2, Fe2O3, FeCl3, AgNO3, and dAgNO3. To achieve this, 141 LAB strains were initially screened for their growth in MRS-Agar media containing various concentrations of metal precursors (0.02-0.2M). This process identified 24 LAB strains exhibiting resistance to these metal precursors. Subsequently, a metal precursor solution (0.01M) was added to the culture media, including the cell extracts of these 24 LAB strains, and incubated at 30°C for 24 hours to facilitate NP synthesis. According to the spectrum scan results for NP synthesis by the 24 LAB strains that showed resistance and grew in metal-precursor-supplemented MRS-Agar media, absorbance values ranged from 4.5-34.1 for FeNPs, 2.2-39.1 for AgNPs, and 3.0-37.8 for TiNPs. These strains are predicted to possess a high capability for NP synthesis from metal precursors. The LAB strains that yielded the highest absorbance values in NP synthesis were, respectively: Lactiplantibacillus. namurensis MF112 for AgNPs (39.1 ABS), Pediococcus ethanolidurans MF115 for TiNPs (37.8 ABS), and Lactiplantibacillus namurensis MF112 for FeNPs (34.1 ABS).
References
-
Akçay, F. A., & Avcı, A. (2018). Bakteriyel Yollarla Metal Nanopartiküllerin Sentezi. Turkish Journal of Agriculture- Food Science and Technology, 6(4), 408. https://doi.org/10.24925/turjaf.v6i4.408-414.1803
-
Aljeboree, A. M., & Alkaim, A. F. (2019). Removal of Antibiotic Tetracycline (TCs) from aqueous solutions by using Titanium dioxide (TiO2) nanoparticles as an alternative material. In Journal of Physics: Conference Series,1294(5)- 052059. IOP Publishing.
-
Annadurai, G., & Rajeshkumar, S. (2013). Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sinica. Pelagia Research Library, 4(3), 59–66. https://doi.org/10.1186/2193-8865-3-30
-
Bağder Elmacı, S., Tokatlı, M., Dursun, D., Özçelik, F., Şanlıbaba, P. (2015). Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol, 60: 241-251. 10.1007/s12223-014-0363-x
-
Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids and Surfaces B: Biointerfaces, 111, 556-560. http://dx.doi.org/10.1016/j.colsurfb.2013.06.041
-
Deljou, A., & Goudarzi, S. (2016). Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian Journal of Biotechnology, 14(2), 25. https://doi.org/10.15171/ijb.1259
-
Dhandapani, P., Maruthamuthu, S., & Rajagopal, G. (2012). Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. Journal of Photochemistry and Photobiology B: Biology, 110, 43-49. http://dx.doi.org/10.1016/j.jphotobiol.2012.03.003
-
Du, J., & Yi, T. H. (2016). Biosynthesis of silver nanoparticles by Variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Materials Letters, 178, 75-78. https://doi.org/10.1016/j.matlet.2016.04.069
-
Durán, N., Marcato, P. D., De Souza, G. I., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of biomedical nanotechnology, 3(2), 203-208. https://doi.org/10.1166/jbn.2007.022
-
Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut microbes, 12(1), 1801944. https://doi.org/10.1080/19490976.2020.1801944
-
Foudaa, A., Saad, E. L., Elgamala, M. S., Mohmedb, A. A., & Salema, S. S. (2017). Optimal factors for biosynthesis of silver nanoparticles by Aspergillus sp. Azhar Bull Sci, 9, 161-172.
-
Jeeva, K., Thiyagarajan, M., Elangovan, V., Geetha, N., & Venkatachalam, P. (2014). Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products, 52, 714-720. https://doi.org/10.1016/j.indcrop.2013.11.037
-
Jha, A. K., Prasad, K., & Kulkarni, A. R. (2009). Synthesis of TiO2 nanoparticles using microorganisms. Colloids and Surfaces B: Biointerfaces, 71(2), 226-229. https://doi.org/10.1016/j.colsurfb.2009.02.007
-
Jin, Y. H., Dunlap, P. E., McBride, S. J., Al-Refai, H., Bushel, P. R., & Freedman, J. H. (2008). Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS genetics, 4(4), e1000053. https://doi.org/10.1371/journal.pgen.1000053
-
Jinu, U., Gomathi, M., Saiqa, I., Geetha, N., Benelli, G., & Venkatachalam, P. (2017). Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microbial pathogenesis, 105, 86-95. https://doi.org/10.1016/j.micpath.2017.02.019
-
Kasithevar, M., Periakaruppan, P., Muthupandian, S., & Mohan, M. (2017). Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microbial pathogenesis, 107, 327-334. https://doi.org/10.1016/j.micpath.2017.04.013
-
Khan, R., & Fulekar, M. H. (2016). Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. Journal of colloid and interface science, 475, 184-191. https://doi.org/10.1016/j.jcis.2016.05.001
-
Kharat, S. N., & Mendhulkar, V. D. (2016). Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Materials Science and Engineering: C, 62, 719-724. http://dx.doi.org/10.1016/j.msec.2016.02.024
-
Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371-384. doi:10.1038/nrmicro3028
-
Matei, A., Matei, S., Matei, G. M., Cogălniceanu, G., & Cornea, C. P. (2020). Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. The EuroBiotech Journal, 4(2), 97-103. https://doi.org/10.2478/ebtj-2020-0011
-
Mathur, H., Beresford, T. P., & Cotter, P. D. (2020). Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients, 12(6), 1679. https://doi.org/10.3390/nu12061679
-
Mora-Villalobos, J. A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., ... & López-Gómez, J. P. (2020). Multi-product lactic acid bacteria fermentations: a review. Fermentation, 6(1), 23. https://doi.org/10.3390/fermentation6010023
-
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346. https://doi.org/10.1088/0957-4484/16/10/059
-
Mousavi, S. M., Hashemi, S. A., Ghasemi, Y., Atapour, A., Amani, A. M., Savar Dashtaki, A., Babapoor, A., and Arjmand, O., 2018, Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial Cells, Nanomedicine, and Biotechnology, 46 (3), S855–S872. https://doi.org/10.1088/0957-4484/16/10/059
-
Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface science, 156(1-2), 1-13. https://doi.org/10.1016/j.cis.2010.02.001
-
Neethu, S., Midhun, S. J., Radhakrishnan, E. K., & Jyothis, M. (2018). Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microbial pathogenesis, 116, 263-272. https://doi.org/10.1016/j.micpath.2018.01.033
-
Ojo, S. A., Lateef, A., Azeez, M. A., Oladejo, S. M., Akinwale, A. S., Asafa, T. B., ... & Beukes, L. S. (2016). Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. Ieee
transactions on nanobioscience, 15(5), 433-442.
-
Ovais, M., Raza, A., Naz, S., Islam, N. U., Khalil, A. T., Ali, S., ... & Shinwari, Z. K. (2017). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Applied microbiology and biotechnology, 101, 3551-3565. https://doi.org/10.1007/s00253-017-8250-4
-
Ocsoy, I., Demirbas, A., McLamore, E. S., Altinsoy, B., Ildiz, N., & Baldemir, A. (2017). Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens. Journal of Molecular Liquids, 238, 263-269. https://doi.org/10.1016/j.molliq.2017.05.012
-
Park, T. J., Lee, K. G., & Lee, S. Y. (2016). Advances in microbial biosynthesis of metal nanoparticles. Applied microbiology and biotechnology, 100, 521-534. https://doi.org/10.1007/s00253-015-6904-7
-
Plavec, T. V., & Berlec, A. (2020). Safety aspects of genetically modified lactic acid bacteria. Microorganisms, 8(2), 297. https://doi.org/10.3390/microorganisms8020297
-
Polat, S., & Fenercioğlu, H. (2014). Gıda ambalajlamasında nanoteknoloji uygulamaları: İnorganik nanopartiküllerin kullanımı. Gıda, 39(3), 187-194. https://doi.org/10.5505/gida
-
Prakash, A., Sharma, S., Ahmad, N., Ghosh, A., & Sinha, P. (2010). Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol, 1(5), 071-079. https://doi.org/10.1063/1.3567934
-
Prakash, T., Ramasamy, S., & Murty, B. S. (2011). Influence of bias voltage on dielectric relaxation of nanocrystalline anatase TiO2 using modulus formalism. Journal of Applied Physics, 109(8).
-
Prasad, K., Jha, A. K., & Kulkarni, A. R. (2007). Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Research Letters, 2(5), 248-250. https://doi.org/10.1007/s11671-007-9060-x
-
Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A., & Harish, R. (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180, 264-267. http://dx.doi.org/10.1016/j.matlet.2016.05.172
-
Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances, 9(5), 2673-2702. https://doi.org/10.1039/C8RA08982E.
-
Salman, J. A., Marjani, M., Abdulrazaq, R., Kamil, I. A. S. S., & Kamil, N. (2015). Antibiofilm effect of iron oxide nanoparticles synthesized by lactobacillus fermentum on catheter. World Journal of Pharmaceutical Research, 4(8), 317-328.
-
Salunke, B. K., Sawant, S. S., Lee, S. I., & Kim, B. S. (2016). Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiology and Biotechnology, 32(5), 1-16.
-
Sieo, C., Wong, B., Abdullah, N. V& Ho, Y., (2007). Effects of Extraction Methods and Age of Cells on the Whole-cell Protein Patterns of Lactobacillus. Research Journal of Microbiology, 2(10), 727-734
-
Sundaram, P. A., Augustine, R., & Kannan, M. (2012). Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnology and bioprocess engineering, 17(4), 835-840. https://doi.org/10.1007/s12257-011-0582-9
-
Sreelekha, E., George, B., Shyam, A., Sajina, N., & Mathew, B. (2021). A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. BioNanoScience, 11, 489-496. https://doi.org/10.1007/s12668-021-00824-7
-
Syame, S. M., Mansour, A. S., Khalaf, D. D., Ibrahim, E. S., & Gaber, E. S. (2020). Green synthesis of silver nanoparticles using lactic acid bacteria: assessment of antimicrobial activity. World's Veterinary Journal, (4), 625-633. https://dx.doi.org/10.54203/scil.2020.wvj75
-
Tokatlı, M., Elmacı, S.B., İşleyen, N.A., Özçelik, F. (2017). Technological properties of lactic acid bacteria isolated from traditional pickles. The Journal of Food, 42(6): 693-707. 10.15237/gida.GD17097
-
Tripathi, R. M., Gupta, R. K., Singh, P., Bhadwal, A. S., Shrivastav, A., Kumar, N., & Shrivastav, B. R. (2014). Ultra-sensitive detection of mercury (II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors and Actuators B: Chemical, 204, 637-646. https://doi.org/10.1016/j.snb.2014.08.015
-
Verma, M. L., Rao, N. M., Tsuzuki, T., Barrow, C. J., & Puri, M. (2019). Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts, 9(5), 420. DOI:10.3390/catal9050420
-
Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano letters, 12(8), 4271-4275. https://doi.org/10.1021/nl301934w
-
Yılmaz, E. (2019). Bakteriyel Yolla Titanyum Dioksit Nanopartiküllerinin Üretimi ve Karakterizasyonu. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Sakarya Üniversitesi, Türkiye.
-
Yusoff, M. S., Gopinath, S. C., Uda, M. N. A., Lakshmipriya, T., Yaakub, A. R. W., & Anbu, P. (2022). Conjugation of silver and gold nanoparticles for enhancing antimicrobial activity. INNOSC Theranostics Pharmacol Sci, 4, 38-47. DOI: 10.36922/itps.v4i2.70
MİKROBİYAL NANOPARTİKÜL SENTEZİNDE YEREL LAKTİK ASİT BAKTERİ SUŞLARININ POTANSİYELİNİN BELİRLENMESİ
Year 2025,
Volume: 28 Issue: 4, 1916 - 1927, 03.12.2025
Özgül Yazar
,
Mehmet Tokatlı
Abstract
Bu çalışmada laktik asit bakteri (LAB) suşlarının K2TiF6 ve TiO2, Fe2O3, FeCl3, AgNO3 ve dAgNO3 metal öncüleri kullanılarak mikrobiyal titanyum, demir ve gümüş metal nanopartikül (NP) sentezleme potansiyelleri belirlenmiştir. Bunun için 141 LAB suşunun farklı konsantrasyonlarda (0.02-0.2M) metal öncü içeren MRS-Agar besiyerlerinde gelişimleri izlenerek metal öncülere direnç gösteren 24 LAB suşu belirlenmiştir. Daha sonra 24 LAB suşunun hücre ekstraktını da içeren kültür ortamlarına metal öncü çözeltisi (0.01M) ilave edilerek nanopartikül sentezi için 30˚C’de 24 saat boyunca inkübasyona bırakılmıştır. Metal öncü katkılı MRS-Agar besiyerinde direnç göstererek geliştiği belirlenen 24 LAB (Levilactobacillus brevis, Lactiplantibacillus plantarum, Pediococcus ethanolidurans, Lactobacillus buchneri, Pediococcus parvulus, Lactiplantibacillus namurensis, Lactiplantibacillus diolivoran, Lacticaseibacillus parabrevis) suşu ile NP sentezinin belirlenmesi için gerçekleştirilen spektrum tarama sonuçlarına göre; FeNP için 4.5-34.1; AgNP için 2.2-39.1 ve TiNP için 3.0-37.8 aralığında absorbans değerleri ölçülmüştür. NP sentezinde en yüksek absorbans değerlerinin ölçüldüğü LAB suşları sırasıyla; AgNP için L. namurensis MF112 (39.1 ABS), TiNP için P. ethanolidurans MF115 (37.8 ABS) ve FeNP için L. namurensis MF112 (34.1 ABS) olarak tespit edilmiştir. Bu suşların metal öncülerden NP sentezleme potansiyelinin olabileceği tespit edilmiştir. Çalışma sonucunda elde edilen veriler uygun LAB suşlarının kullanımı ile mikrobiyal NP üretimi optimizasyonu ve NP karakterizasyonu gibi daha ileri çalışmalara ışık tutacağı ön görülmektedir.
Ethical Statement
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Supporting Institution
Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi Koordinatörlüğü (BAP: 2023/25)
Thanks
Bu çalışma Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi Koordinatörlüğü (BAP: 2023/25) tarafından finanse edilmiştir.
References
-
Akçay, F. A., & Avcı, A. (2018). Bakteriyel Yollarla Metal Nanopartiküllerin Sentezi. Turkish Journal of Agriculture- Food Science and Technology, 6(4), 408. https://doi.org/10.24925/turjaf.v6i4.408-414.1803
-
Aljeboree, A. M., & Alkaim, A. F. (2019). Removal of Antibiotic Tetracycline (TCs) from aqueous solutions by using Titanium dioxide (TiO2) nanoparticles as an alternative material. In Journal of Physics: Conference Series,1294(5)- 052059. IOP Publishing.
-
Annadurai, G., & Rajeshkumar, S. (2013). Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sinica. Pelagia Research Library, 4(3), 59–66. https://doi.org/10.1186/2193-8865-3-30
-
Bağder Elmacı, S., Tokatlı, M., Dursun, D., Özçelik, F., Şanlıbaba, P. (2015). Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol, 60: 241-251. 10.1007/s12223-014-0363-x
-
Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids and Surfaces B: Biointerfaces, 111, 556-560. http://dx.doi.org/10.1016/j.colsurfb.2013.06.041
-
Deljou, A., & Goudarzi, S. (2016). Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian Journal of Biotechnology, 14(2), 25. https://doi.org/10.15171/ijb.1259
-
Dhandapani, P., Maruthamuthu, S., & Rajagopal, G. (2012). Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. Journal of Photochemistry and Photobiology B: Biology, 110, 43-49. http://dx.doi.org/10.1016/j.jphotobiol.2012.03.003
-
Du, J., & Yi, T. H. (2016). Biosynthesis of silver nanoparticles by Variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Materials Letters, 178, 75-78. https://doi.org/10.1016/j.matlet.2016.04.069
-
Durán, N., Marcato, P. D., De Souza, G. I., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of biomedical nanotechnology, 3(2), 203-208. https://doi.org/10.1166/jbn.2007.022
-
Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut microbes, 12(1), 1801944. https://doi.org/10.1080/19490976.2020.1801944
-
Foudaa, A., Saad, E. L., Elgamala, M. S., Mohmedb, A. A., & Salema, S. S. (2017). Optimal factors for biosynthesis of silver nanoparticles by Aspergillus sp. Azhar Bull Sci, 9, 161-172.
-
Jeeva, K., Thiyagarajan, M., Elangovan, V., Geetha, N., & Venkatachalam, P. (2014). Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products, 52, 714-720. https://doi.org/10.1016/j.indcrop.2013.11.037
-
Jha, A. K., Prasad, K., & Kulkarni, A. R. (2009). Synthesis of TiO2 nanoparticles using microorganisms. Colloids and Surfaces B: Biointerfaces, 71(2), 226-229. https://doi.org/10.1016/j.colsurfb.2009.02.007
-
Jin, Y. H., Dunlap, P. E., McBride, S. J., Al-Refai, H., Bushel, P. R., & Freedman, J. H. (2008). Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS genetics, 4(4), e1000053. https://doi.org/10.1371/journal.pgen.1000053
-
Jinu, U., Gomathi, M., Saiqa, I., Geetha, N., Benelli, G., & Venkatachalam, P. (2017). Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microbial pathogenesis, 105, 86-95. https://doi.org/10.1016/j.micpath.2017.02.019
-
Kasithevar, M., Periakaruppan, P., Muthupandian, S., & Mohan, M. (2017). Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microbial pathogenesis, 107, 327-334. https://doi.org/10.1016/j.micpath.2017.04.013
-
Khan, R., & Fulekar, M. H. (2016). Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. Journal of colloid and interface science, 475, 184-191. https://doi.org/10.1016/j.jcis.2016.05.001
-
Kharat, S. N., & Mendhulkar, V. D. (2016). Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Materials Science and Engineering: C, 62, 719-724. http://dx.doi.org/10.1016/j.msec.2016.02.024
-
Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371-384. doi:10.1038/nrmicro3028
-
Matei, A., Matei, S., Matei, G. M., Cogălniceanu, G., & Cornea, C. P. (2020). Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. The EuroBiotech Journal, 4(2), 97-103. https://doi.org/10.2478/ebtj-2020-0011
-
Mathur, H., Beresford, T. P., & Cotter, P. D. (2020). Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients, 12(6), 1679. https://doi.org/10.3390/nu12061679
-
Mora-Villalobos, J. A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., ... & López-Gómez, J. P. (2020). Multi-product lactic acid bacteria fermentations: a review. Fermentation, 6(1), 23. https://doi.org/10.3390/fermentation6010023
-
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346. https://doi.org/10.1088/0957-4484/16/10/059
-
Mousavi, S. M., Hashemi, S. A., Ghasemi, Y., Atapour, A., Amani, A. M., Savar Dashtaki, A., Babapoor, A., and Arjmand, O., 2018, Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial Cells, Nanomedicine, and Biotechnology, 46 (3), S855–S872. https://doi.org/10.1088/0957-4484/16/10/059
-
Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface science, 156(1-2), 1-13. https://doi.org/10.1016/j.cis.2010.02.001
-
Neethu, S., Midhun, S. J., Radhakrishnan, E. K., & Jyothis, M. (2018). Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microbial pathogenesis, 116, 263-272. https://doi.org/10.1016/j.micpath.2018.01.033
-
Ojo, S. A., Lateef, A., Azeez, M. A., Oladejo, S. M., Akinwale, A. S., Asafa, T. B., ... & Beukes, L. S. (2016). Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. Ieee
transactions on nanobioscience, 15(5), 433-442.
-
Ovais, M., Raza, A., Naz, S., Islam, N. U., Khalil, A. T., Ali, S., ... & Shinwari, Z. K. (2017). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Applied microbiology and biotechnology, 101, 3551-3565. https://doi.org/10.1007/s00253-017-8250-4
-
Ocsoy, I., Demirbas, A., McLamore, E. S., Altinsoy, B., Ildiz, N., & Baldemir, A. (2017). Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens. Journal of Molecular Liquids, 238, 263-269. https://doi.org/10.1016/j.molliq.2017.05.012
-
Park, T. J., Lee, K. G., & Lee, S. Y. (2016). Advances in microbial biosynthesis of metal nanoparticles. Applied microbiology and biotechnology, 100, 521-534. https://doi.org/10.1007/s00253-015-6904-7
-
Plavec, T. V., & Berlec, A. (2020). Safety aspects of genetically modified lactic acid bacteria. Microorganisms, 8(2), 297. https://doi.org/10.3390/microorganisms8020297
-
Polat, S., & Fenercioğlu, H. (2014). Gıda ambalajlamasında nanoteknoloji uygulamaları: İnorganik nanopartiküllerin kullanımı. Gıda, 39(3), 187-194. https://doi.org/10.5505/gida
-
Prakash, A., Sharma, S., Ahmad, N., Ghosh, A., & Sinha, P. (2010). Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol, 1(5), 071-079. https://doi.org/10.1063/1.3567934
-
Prakash, T., Ramasamy, S., & Murty, B. S. (2011). Influence of bias voltage on dielectric relaxation of nanocrystalline anatase TiO2 using modulus formalism. Journal of Applied Physics, 109(8).
-
Prasad, K., Jha, A. K., & Kulkarni, A. R. (2007). Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Research Letters, 2(5), 248-250. https://doi.org/10.1007/s11671-007-9060-x
-
Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A., & Harish, R. (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180, 264-267. http://dx.doi.org/10.1016/j.matlet.2016.05.172
-
Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances, 9(5), 2673-2702. https://doi.org/10.1039/C8RA08982E.
-
Salman, J. A., Marjani, M., Abdulrazaq, R., Kamil, I. A. S. S., & Kamil, N. (2015). Antibiofilm effect of iron oxide nanoparticles synthesized by lactobacillus fermentum on catheter. World Journal of Pharmaceutical Research, 4(8), 317-328.
-
Salunke, B. K., Sawant, S. S., Lee, S. I., & Kim, B. S. (2016). Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiology and Biotechnology, 32(5), 1-16.
-
Sieo, C., Wong, B., Abdullah, N. V& Ho, Y., (2007). Effects of Extraction Methods and Age of Cells on the Whole-cell Protein Patterns of Lactobacillus. Research Journal of Microbiology, 2(10), 727-734
-
Sundaram, P. A., Augustine, R., & Kannan, M. (2012). Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnology and bioprocess engineering, 17(4), 835-840. https://doi.org/10.1007/s12257-011-0582-9
-
Sreelekha, E., George, B., Shyam, A., Sajina, N., & Mathew, B. (2021). A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. BioNanoScience, 11, 489-496. https://doi.org/10.1007/s12668-021-00824-7
-
Syame, S. M., Mansour, A. S., Khalaf, D. D., Ibrahim, E. S., & Gaber, E. S. (2020). Green synthesis of silver nanoparticles using lactic acid bacteria: assessment of antimicrobial activity. World's Veterinary Journal, (4), 625-633. https://dx.doi.org/10.54203/scil.2020.wvj75
-
Tokatlı, M., Elmacı, S.B., İşleyen, N.A., Özçelik, F. (2017). Technological properties of lactic acid bacteria isolated from traditional pickles. The Journal of Food, 42(6): 693-707. 10.15237/gida.GD17097
-
Tripathi, R. M., Gupta, R. K., Singh, P., Bhadwal, A. S., Shrivastav, A., Kumar, N., & Shrivastav, B. R. (2014). Ultra-sensitive detection of mercury (II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors and Actuators B: Chemical, 204, 637-646. https://doi.org/10.1016/j.snb.2014.08.015
-
Verma, M. L., Rao, N. M., Tsuzuki, T., Barrow, C. J., & Puri, M. (2019). Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts, 9(5), 420. DOI:10.3390/catal9050420
-
Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano letters, 12(8), 4271-4275. https://doi.org/10.1021/nl301934w
-
Yılmaz, E. (2019). Bakteriyel Yolla Titanyum Dioksit Nanopartiküllerinin Üretimi ve Karakterizasyonu. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Sakarya Üniversitesi, Türkiye.
-
Yusoff, M. S., Gopinath, S. C., Uda, M. N. A., Lakshmipriya, T., Yaakub, A. R. W., & Anbu, P. (2022). Conjugation of silver and gold nanoparticles for enhancing antimicrobial activity. INNOSC Theranostics Pharmacol Sci, 4, 38-47. DOI: 10.36922/itps.v4i2.70