Research Article
BibTex RIS Cite

NANOPARÇACIK KATKILI E7 NEMATİK SIVI KRİSTALİN İLETKENLİK, KAPASİTANS VE EMPEDANS ÖZELLİKLERİNİN İNCELENMESİ

Year 2025, Volume: 28 Issue: 4, 1961 - 1972, 03.12.2025

Abstract

Bu çalışmada, Vanadyum Pentaoksit (V2O5) nanoparçacık ile katkılanmış E7 nematik sıvı kristal farklı frekans ve gerilim değerlerinde iletkenlik, kapasitans ve empedans gibi elektriksel özellikleri incelenmektedir. Metal oksit nanoparçacık sıvı kristal etkileşimi üzerine birçok araştırma bulunmakla birlikte, V2O5 gibi katmanlı ve yarı iletken katkı malzemenin E7 nematik sıvı kristal üzerindeki etkisi yeterince aydınlatılmamıştır. Araştırma V2O5 nanoparçacık %0.1, %0.2 ve %0.5 oranlarında E7 nematik sıvı kristaline katkılandırılması ile iletkenlik, kapasitans ve empedans elektriksel parametrelerin frekans ve gerilime bağlı olarak nasıl değiştiğini ortaya koymayı amaçlamaktadır.

E7 nematik sıvı kristale nanoparçacık katkı, düşük frekans ve gerilim aralıklarında etkisinin kısıtlı kaldığı, ancak orta-yüksek frekans veya gerilimde V2O5 nanoparçacıkların sıvı kristal içinde yeni taşıma kanalları oluşturarak elektriksel özellikleri önemli ölçüde iyileştirdiğini göstermektedir. Özellikle %0.5 katkı oranının, yüksek frekans ve gerilim bölgelerinde en düşük empedans ve en yüksek iletkenlik değerlerine ulaşmaktadır. Düşük frekanslarda nanoparçacık-arayüz etkileşimlerinin kutuplanma davranışını güçlendirerek daha yüksek kapasitans değerine, ancak frekans arttıkça sıvı kristal moleküllerinin yeniden yönlenmesi ile katkı etkisinin kısmen azaldığı tespit edilmektedir. V2O5 nanoparçacık katkı ile E7 nematik sıvı kristalin elektriksel özelliklerini önemli ölçüde değiştiği tespit edilmektedir. Bu sonuçlar, sensör teknolojisi, optoelektronik cihaz tasarımlarına kadar geniş bir endüstriyel uygulama alanı için yenilikçi ve çok amaçlı malzeme üretilebileceğini göstermektedir.

References

  • Ahmed, H. A., & Aboelnaga, A. (2022). Synthesis and mesomorphic study of new phenylthiophene liquid crystals. Liquid Crystals, 49(6), 804–811. https://doi.org/10.1080/02678292.2021.2008032
  • Balasubramani, V., Chandrasekaran, J., Manikandan, V., Le, T. K., Marnadu, R., & Vivek, P. (2021). Improved photodetector performance of high-k dielectric material (La) doped V2O5 thin films as an interfacial layer in Schottky barrier diodes. Surfaces and Interfaces, 25, 101297. https://doi.org/10.1016/j.surfin.2021.101297
  • Bleha, W. P., Lipton, L. T., Wiener-Avnear, E., Grinberg, J., Reif, P. G., Casasent, D., Brown, H. B., & Markevitch, B. V. (1978). Application of the liquid crystal light valve to real-time optical data processing. Optical Engineering, 17(4), 371–384. https://doi.org/10.1117/12.7972245
  • Bronnikov, S., Kostromin, S., & Zuev, V. (2013). Polymer-dispersed liquid crystals: progress in preparation, investigation, and application. Journal of Macromolecular Science, Part B, 52(12), 1718–1735. https://doi.org/10.1080/00222348.2013.808926
  • Brouckaert, N., Podoliak, N., Orlova, T., Bankova, D., De Fazio, A. F., Kanaras, A. G., Hovorka, O., D’Alessandro, G., & Kaczmarek, M. (2022). Nanoparticle-Induced Property Changes in Nematic Liquid Crystals. Nanomaterials, 12(3), 341. https://doi.org/10.3390/nano12030341
  • Canli, N. Y., Erdogan, M., & Kavak, P. (2021). Comparative dielectric study of bent-core liquid crystal doped 5CB. Ferroelectrics, 585(1), 198–210. https://doi.org/10.1080/00150193.2021.1991209
  • Caputo, R., De Luca, A., De Sio, L., Pezzi, L., Strangi, G., Umeton, C., Veltri, A., Asquini, R., d’Alessandro, A., & Donisi, D. (2009). POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. Journal of Optics A: Pure and Applied Optics, 11(2), 24017. https://doi.org/10.1088/1464-4258/11/2/024017
  • Chigrinov, V. G., & Yakovlev, D. A. (2006). Optimization and Modeling of Liquid Crystal Displays. Molecular Crystals and Liquid Crystals, 453(1), 107–121. https://doi.org/10.1080/15421400600651658
  • Eskalen, H., Özgan, Ş., & Kerli, S. (2019). Synthesis, characterization of V2O5 nanoparticle and dispersion of them into nematic liquid crystal. Applied Physics A: Materials Science and Processing, 125(12). https://doi.org/10.1007/s00339-019-3157-9
  • Eskalen, H., Özğan, Ş., Alver, Ü., & Kerli, S. (2015). Electro-Optical Properties of Liquid Crystals Composite with Zinc Oxide Nanoparticles. Acta Physica Polonica A, 127(3), 756–760. https://doi.org/10.12693/APhysPolA.127.756
  • Eskalen, H., Özgan, Ş., Okumuş, M. (2019). Electro-optical, thermal and dielectric properties of ternary mixture of E7/6CB/6BA liquid crystal mixture complex. Optik, 187, 223-229. https://doi.org/10.1016/j.ijleo.2019.02.119
  • Eskalen, H., Özgan, Ş., Okumuş, M., & Kerli, S. (2019). Thermal and Electro-optical Properties of Graphene Oxide/Dye-Doped Nematic Liquid Crystal. Brazilian Journal of Physics, 49(3), 341–347. https://doi.org/10.1007/s13538-018-00633-6
  • Goel, P., Arora, M., & Biradar, A. M. (2014). Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling. Journal of Applied Physics, 115(12). https://doi.org/10.1063/1.4869740
  • Hu, P., Hu, P., Vu, T. D., Li, M., Wang, S., Ke, Y., Zeng, X., Mai, L., & Long, Y. (2023). Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chemical Reviews, 123(8), 4353–4415. https://doi.org/10.1021/acs.chemrev.2c00546
  • Khoo, I.-C. (2022). Liquid crystals. John Wiley & Sons.
  • Lencer, D., Salinga, M., & Wuttig, M. (2011). Design rules for phase‐change materials in data storage applications. Advanced Materials, 23(18), 2030–2058. https://doi.org/10.1002/adma.201004255
  • Matharu, A. S., Jeeva, S., & Ramanujam, P. S. (2007). Liquid crystals for holographic optical data storage. Chemical Society Reviews, 36(12), 1868–1880. https://doi.org/10.1039/B706242G
  • Meier, G., Sackmann, E., & Grabmaier, J. G. (2012). Applications of liquid crystals. Springer Science & Business Media.
  • Mishra, S., Manjuladevi, V., & Gupta, R. K. (2023). Effect of shape of ZnO nanoparticle on electro-optic and dielectric properties of nematic liquid crystal. Journal of Molecular Liquids, 386(11), 122482. https://doi.org/10.1016/j.molliq.2023.122482
  • Nasri, R., Missaoui, T., Hbibi, A., & Soltani, T. (2021). Enhanced dielectric properties of Nematic liquid crystal doped with ferroelectric nanoparticles. Liquid Crystals, 48(10), 1429–1437. https://doi.org/10.1080/02678292.2021.1876934
  • Özgan, Ş., Eskalen, H., & Tapkıranlı, Y. (2018). Thermal and electro-optic properties of graphene oxide-doped hexylcyanobiphenyl liquid crystal. Journal of Theoretical and Applied Physics, 12(3), 169–176. https://doi.org/10.1007/s40094-018-0307-y
  • Özgan, Ş., & Okumuş, M. (2011). Thermal and Spectrophotometric Analysis of Liquid Crystal 8CB/8OCB Mixtures. Brazilian Journal of Physics, 41(2–3), 118–122. https://doi.org/10.1007/s13538-011-0034-1
  • Pavlin, J., Vaupotič, N., & Čepič, M. (2013). Liquid crystals: a new topic in physics for undergraduates. European Journal of Physics, 34(3), 745–761. https://doi.org/10.1088/0143-0807/34/3/745
  • Shen, W., Zhang, H., Miao, Z., & Ye, Z. (2023). Recent Progress in Functional Dye‐Doped Liquid Crystal Devices. Advanced Functional Materials, 33(6), 2210664. https://doi.org/10.1002/adfm.202210664
  • Singh, S. P., Chandel, V. S., & Manohar, R. (2017). Dielectric Behaviour of Pure and Dye Doped Nematic Liquid Crystal E-24. In Recent Trends in Materials and Devices: Proceedings ICRTMD 2015 (pp. 527–533). Springer. https://doi.org/10.1007/978-3-319-29096-6_68
  • Uruş, S., Çaylar, M., Eskalen, H., & Özgan, Ş. (2022). Synthesis of GO@Fe3O4@TiO2 type organic–inorganic nanohybrid material: Investigation of the effect of nanohybrid doped liquid crystal E7 and the photocatalytic degradation of ciprofloxacin. Journal of Materials Science: Materials in Electronics, 33(7), 4314–4329. https://doi.org/10.1007/s10854-021-07625-4
  • Wang, Z., Xu, T., Noel, A., Chen, Y.-C., & Liu, T. (2021). Applications of liquid crystals in biosensing. Soft Matter, 17(18), 4675–4702. https://doi.org/10.1039/D0SM02088E
  • Yadav, G., Pathak, G., Agrahari, K., Kumar, M., Khan, M. S., Chandel, V. S., & Manohar, R. (2019). Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles. Chinese Physics B, 28(3), 034209. https://doi.org/10.1088/1674-1056/28/3/034209

STUDY OF CONDUCTIVITY, CAPACITANCE, AND IMPEDANCE PROPERTIES OF NANOPARTICLE-DOPED E7 NEMATIC LIQUID CRYSTAL

Year 2025, Volume: 28 Issue: 4, 1961 - 1972, 03.12.2025

Abstract

This study investigates the electrical properties—conductivity, capacitance, and impedance—of E7 nematic liquid crystal doped with vanadium pentoxide (V₂O₅) nanoparticles under different frequencies and voltages. Although numerous studies have focused on the interaction between metal oxide nanoparticles and liquid crystals, the influence of a layered and semiconducting material such as V₂O₅ on E7 liquid crystal has not been fully elucidated. In this work, V₂O₅ nanoparticles were incorporated into E7 at concentrations of 0.1%, 0.2%, and 0.5% by weight. The experimental results reveal that the effect of nanoparticles is limited at low frequencies and voltages but becomes pronounced at medium and high ranges, where V₂O₅ creates additional charge transport channels, significantly improving the electrical performance. Particularly, the 0.5% doped sample exhibits the highest conductivity and the lowest impedance values. At low frequencies, interfacial interactions between nanoparticles and liquid crystal molecules enhance polarization, resulting in increased capacitance, while at higher frequencies, the reorientation of liquid crystal molecules slightly reduces this effect. Overall, the incorporation of V₂O₅ nanoparticles considerably modifies the electrical behavior of E7, suggesting its potential for use in advanced sensor technologies and optoelectronic device applications.

References

  • Ahmed, H. A., & Aboelnaga, A. (2022). Synthesis and mesomorphic study of new phenylthiophene liquid crystals. Liquid Crystals, 49(6), 804–811. https://doi.org/10.1080/02678292.2021.2008032
  • Balasubramani, V., Chandrasekaran, J., Manikandan, V., Le, T. K., Marnadu, R., & Vivek, P. (2021). Improved photodetector performance of high-k dielectric material (La) doped V2O5 thin films as an interfacial layer in Schottky barrier diodes. Surfaces and Interfaces, 25, 101297. https://doi.org/10.1016/j.surfin.2021.101297
  • Bleha, W. P., Lipton, L. T., Wiener-Avnear, E., Grinberg, J., Reif, P. G., Casasent, D., Brown, H. B., & Markevitch, B. V. (1978). Application of the liquid crystal light valve to real-time optical data processing. Optical Engineering, 17(4), 371–384. https://doi.org/10.1117/12.7972245
  • Bronnikov, S., Kostromin, S., & Zuev, V. (2013). Polymer-dispersed liquid crystals: progress in preparation, investigation, and application. Journal of Macromolecular Science, Part B, 52(12), 1718–1735. https://doi.org/10.1080/00222348.2013.808926
  • Brouckaert, N., Podoliak, N., Orlova, T., Bankova, D., De Fazio, A. F., Kanaras, A. G., Hovorka, O., D’Alessandro, G., & Kaczmarek, M. (2022). Nanoparticle-Induced Property Changes in Nematic Liquid Crystals. Nanomaterials, 12(3), 341. https://doi.org/10.3390/nano12030341
  • Canli, N. Y., Erdogan, M., & Kavak, P. (2021). Comparative dielectric study of bent-core liquid crystal doped 5CB. Ferroelectrics, 585(1), 198–210. https://doi.org/10.1080/00150193.2021.1991209
  • Caputo, R., De Luca, A., De Sio, L., Pezzi, L., Strangi, G., Umeton, C., Veltri, A., Asquini, R., d’Alessandro, A., & Donisi, D. (2009). POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. Journal of Optics A: Pure and Applied Optics, 11(2), 24017. https://doi.org/10.1088/1464-4258/11/2/024017
  • Chigrinov, V. G., & Yakovlev, D. A. (2006). Optimization and Modeling of Liquid Crystal Displays. Molecular Crystals and Liquid Crystals, 453(1), 107–121. https://doi.org/10.1080/15421400600651658
  • Eskalen, H., Özgan, Ş., & Kerli, S. (2019). Synthesis, characterization of V2O5 nanoparticle and dispersion of them into nematic liquid crystal. Applied Physics A: Materials Science and Processing, 125(12). https://doi.org/10.1007/s00339-019-3157-9
  • Eskalen, H., Özğan, Ş., Alver, Ü., & Kerli, S. (2015). Electro-Optical Properties of Liquid Crystals Composite with Zinc Oxide Nanoparticles. Acta Physica Polonica A, 127(3), 756–760. https://doi.org/10.12693/APhysPolA.127.756
  • Eskalen, H., Özgan, Ş., Okumuş, M. (2019). Electro-optical, thermal and dielectric properties of ternary mixture of E7/6CB/6BA liquid crystal mixture complex. Optik, 187, 223-229. https://doi.org/10.1016/j.ijleo.2019.02.119
  • Eskalen, H., Özgan, Ş., Okumuş, M., & Kerli, S. (2019). Thermal and Electro-optical Properties of Graphene Oxide/Dye-Doped Nematic Liquid Crystal. Brazilian Journal of Physics, 49(3), 341–347. https://doi.org/10.1007/s13538-018-00633-6
  • Goel, P., Arora, M., & Biradar, A. M. (2014). Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling. Journal of Applied Physics, 115(12). https://doi.org/10.1063/1.4869740
  • Hu, P., Hu, P., Vu, T. D., Li, M., Wang, S., Ke, Y., Zeng, X., Mai, L., & Long, Y. (2023). Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chemical Reviews, 123(8), 4353–4415. https://doi.org/10.1021/acs.chemrev.2c00546
  • Khoo, I.-C. (2022). Liquid crystals. John Wiley & Sons.
  • Lencer, D., Salinga, M., & Wuttig, M. (2011). Design rules for phase‐change materials in data storage applications. Advanced Materials, 23(18), 2030–2058. https://doi.org/10.1002/adma.201004255
  • Matharu, A. S., Jeeva, S., & Ramanujam, P. S. (2007). Liquid crystals for holographic optical data storage. Chemical Society Reviews, 36(12), 1868–1880. https://doi.org/10.1039/B706242G
  • Meier, G., Sackmann, E., & Grabmaier, J. G. (2012). Applications of liquid crystals. Springer Science & Business Media.
  • Mishra, S., Manjuladevi, V., & Gupta, R. K. (2023). Effect of shape of ZnO nanoparticle on electro-optic and dielectric properties of nematic liquid crystal. Journal of Molecular Liquids, 386(11), 122482. https://doi.org/10.1016/j.molliq.2023.122482
  • Nasri, R., Missaoui, T., Hbibi, A., & Soltani, T. (2021). Enhanced dielectric properties of Nematic liquid crystal doped with ferroelectric nanoparticles. Liquid Crystals, 48(10), 1429–1437. https://doi.org/10.1080/02678292.2021.1876934
  • Özgan, Ş., Eskalen, H., & Tapkıranlı, Y. (2018). Thermal and electro-optic properties of graphene oxide-doped hexylcyanobiphenyl liquid crystal. Journal of Theoretical and Applied Physics, 12(3), 169–176. https://doi.org/10.1007/s40094-018-0307-y
  • Özgan, Ş., & Okumuş, M. (2011). Thermal and Spectrophotometric Analysis of Liquid Crystal 8CB/8OCB Mixtures. Brazilian Journal of Physics, 41(2–3), 118–122. https://doi.org/10.1007/s13538-011-0034-1
  • Pavlin, J., Vaupotič, N., & Čepič, M. (2013). Liquid crystals: a new topic in physics for undergraduates. European Journal of Physics, 34(3), 745–761. https://doi.org/10.1088/0143-0807/34/3/745
  • Shen, W., Zhang, H., Miao, Z., & Ye, Z. (2023). Recent Progress in Functional Dye‐Doped Liquid Crystal Devices. Advanced Functional Materials, 33(6), 2210664. https://doi.org/10.1002/adfm.202210664
  • Singh, S. P., Chandel, V. S., & Manohar, R. (2017). Dielectric Behaviour of Pure and Dye Doped Nematic Liquid Crystal E-24. In Recent Trends in Materials and Devices: Proceedings ICRTMD 2015 (pp. 527–533). Springer. https://doi.org/10.1007/978-3-319-29096-6_68
  • Uruş, S., Çaylar, M., Eskalen, H., & Özgan, Ş. (2022). Synthesis of GO@Fe3O4@TiO2 type organic–inorganic nanohybrid material: Investigation of the effect of nanohybrid doped liquid crystal E7 and the photocatalytic degradation of ciprofloxacin. Journal of Materials Science: Materials in Electronics, 33(7), 4314–4329. https://doi.org/10.1007/s10854-021-07625-4
  • Wang, Z., Xu, T., Noel, A., Chen, Y.-C., & Liu, T. (2021). Applications of liquid crystals in biosensing. Soft Matter, 17(18), 4675–4702. https://doi.org/10.1039/D0SM02088E
  • Yadav, G., Pathak, G., Agrahari, K., Kumar, M., Khan, M. S., Chandel, V. S., & Manohar, R. (2019). Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles. Chinese Physics B, 28(3), 034209. https://doi.org/10.1088/1674-1056/28/3/034209
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Functional Materials
Journal Section Research Article
Authors

Şükrü Özğan 0000-0001-9334-327X

Publication Date December 3, 2025
Submission Date July 30, 2025
Acceptance Date October 20, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Özğan, Ş. (2025). NANOPARÇACIK KATKILI E7 NEMATİK SIVI KRİSTALİN İLETKENLİK, KAPASİTANS VE EMPEDANS ÖZELLİKLERİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1961-1972.