Research Article
BibTex RIS Cite

ESTIMATION OF EARTHQUAKE-INDUCED SLOPE DEFORMATIONS

Year 2025, Volume: 28 Issue: 4, 1973 - 1982, 03.12.2025

Abstract

As a result of displacements induced by earthquakes, mass movements and collapses occur on slopes. Estimating the potential ground displacement resulting from earthquakes is important for both on-slope and below-slope structures. However, the long duration and complexity of dynamic analysis make such studies difficult. Various displacement estimation formulas exist in the literature to address this challenge. In this study, analyses were conducted using Plaxis 2D software, based on the finite element method, on slopes with different geometries and soil properties under different dynamic loadings to calculate the displacements that will occur on slopes due to dynamic effects. The Hardening Soil-Small Strain material model was used to model the soil behavior in the analyses. Dynamic analyses were conducted for slopes with static coefficients of safety between 1.30 and 2.00 using earthquake records of two different magnitudes, and an attempt was made to develop a relationship between the displacements obtained at the top of the slope and parameters such as maximum ground acceleration (PGA), static coefficients of safety, and so on. Consequently, the acceleration-dynamic deformation and static coefficients of safety-dynamic deformation relationships developed in this study can be easily determined at the initial design stage using tables or formulas, without requiring the need for long and laborious dynamic analyses.

References

  • Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458 Jibson, R.W. (1993). Predicting Earthquake-Induced Landslide Displacements Using Newmark’s Sliding Block Analysis. Transportation Research Record, 1411, 9-17.
  • Jia, J. (2024). Dynamic stability analysis method of anchored rocky slope considering seismic deterioration effect. Scientific Reports, 14, 57413. https://doi.org/10.1038/s41598-024-57413-3
  • Newmark, N. M. (1965). Effects of Earthquakes on Dams and Embankments. Geotechnique, 15, 139-160. http://dx.doi.org/10.1680/geot.1965.15.2.139
  • Rathje, E. M., & Bray, J. D. (2000). Nonlinear coupled seismic sliding analysis of earth structures. Journal of Geotechnical and Geoenvironmental Engineering, 126(11), 1002-1014. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1002)
  • Saygılı, G., & Rathje, E. M. (2008). Empirical predictive models for earthquake-induced sliding displacements of slopes. Journal of Geotechnical and Geoenvironmental Engineering,134(6), 790-883. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(790)
  • Schanz, T., Vermeer, P.A., & Bonnier, P.G. (1999). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics, 281-296. https://doi.org/10.1201/9781315138206-27
  • Shi, C., Qiao, T., Xue, D., Wu, S., & Zhang, C. (2025). Dynamic responses and stability analysis of a large-scale slope deposit under non-uniform seismic input. Geoenvironmental Disasters, 12(19). https://doi.org/10.1186/s40677-025-00322-y
  • Ullah, S., Ren, G., Ge, Y., & Kinyua, E. M. (2025). Dynamic Slope Stability Assessment Under Blast-Induced Vibrations: A Case Study of the Saindak Copper-Gold Open-Pit Mine. Sustainability, 17(14), 6642. https://doi.org/10.3390/su17146642
  • Wei, Y., Jiaxin, L., Zonghong, L., Wei, W., & Xiaoyun, S. (2020). Computers and geotechnics a strength reduction method based on the generalized hoek-brown (GHB) criterion for rock slope stability analysis. Computers and Geotechnics, 117(1), 103240. https://doi.org/10.1016/j.compgeo.2019.103240
  • Yamane, T. (2001). Temel regresyon analizi. Ankara: Gazi Kitabevi.
  • Yuan, W., Bai, B., Li, X., & Wang, H. (2013). A strength reduction method based on double reduction parameters and its application. Journal of Central South University, 20(9), 2555–2562. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937
  • Xu, L. (2025). Seismic slope stability analysis using modified pseudo-dynamic method. PLOS ONE, 20(8), e0330435. https://doi.org/10.1371/journal.pone.0330435
  • Zhang, F., Jia, S., & Gao, Y. (2024). Recent advances in stability analysis and design of 3D slopes. Frontiers in Built Environment, 10, 1410474. https://doi.org/10.3389/fbuil.2024.1410474
  • Zhang, Y., Chen, G., Zheng, L., Li, Y., & Zhuang, X. (2013). Effects of geometries on three-dimensional slope stability. Canadian Geotechnical Journal, 50(3), 233–249. https://doi.org/10.1139/cgj-2012-0279
  • Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method vol. 1: Basic formulation and linear problems. (4th ed.). London: McGraw-Hill

DEPREM KAYNAKLI ŞEV DEFORMASYONLARININ TAHMİNİ

Year 2025, Volume: 28 Issue: 4, 1973 - 1982, 03.12.2025

Abstract

Deprem hareketiyle birlikte ortaya çıkan deplasmanlar sonucunda, şevlerde kitle hareketleri ve göçmeler meydana gelmektedir. Deprem kaynaklı meydana gelmesi muhtemel zemin deplasman miktarının tahmin edilmesi hem şev üstü yapılar hem de şev altı yapılar için önem arz etmektedir. Ancak dinamik analiz sürelerinin uzun olması ve işlem karmaşıklığı bu tür çalışmaların yapılmasını zorlaştırmaktadır. Bu zorluğun giderilmesi için literatürde çeşitli deplasman tahmini formülleri yer almaktadır. Bu çalışmada dinamik etkiler sonucunda şevlerde oluşacak deplasmanların hesaplanabilmesi için farklı geometri ve zemin özelliklerine sahip şevler üzerinde farklı dinamik yüklemeler altında sonlu elemanlar yöntemine dayanan Plaxis 2D yazılımı kullanılarak analizler yapılmıştır. Analizlerde, zemin davranışını modellemek için, Hardening Soil-Small Strain malzeme modeli kullanılmıştır. Statik güvenlik katsayısı değeri 1,30 ile 2,00 arasında yer alan şevler için dinamik analizler 2 farklı büyüklükteki deprem kaydı ile yapılmış ve şevin üst noktasında elde edilen deplasmanlar ile maksimum yer ivmesi (PGA), statik güvenlik katsayısı vb. parametreler arasında bir ilişki geliştirilmeye çalışılmıştır. Sonuç olarak, analiz süreleri çok uzun ve zahmetli olan dinamik analizlerin yapılmasına gerek olmadan olası bir deprem sonucunda o bölgede oluşacak deformasyonların hesaplanması, bu çalışmayla geliştirilen ivme-dinamik deformasyon, statik güvenlik katsayısı-dinamik deformasyon ilişkisi tablo ya da formüller ile ilk tasarım aşamasında kolaylıkla belirlenebilecektir.

References

  • Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458 Jibson, R.W. (1993). Predicting Earthquake-Induced Landslide Displacements Using Newmark’s Sliding Block Analysis. Transportation Research Record, 1411, 9-17.
  • Jia, J. (2024). Dynamic stability analysis method of anchored rocky slope considering seismic deterioration effect. Scientific Reports, 14, 57413. https://doi.org/10.1038/s41598-024-57413-3
  • Newmark, N. M. (1965). Effects of Earthquakes on Dams and Embankments. Geotechnique, 15, 139-160. http://dx.doi.org/10.1680/geot.1965.15.2.139
  • Rathje, E. M., & Bray, J. D. (2000). Nonlinear coupled seismic sliding analysis of earth structures. Journal of Geotechnical and Geoenvironmental Engineering, 126(11), 1002-1014. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1002)
  • Saygılı, G., & Rathje, E. M. (2008). Empirical predictive models for earthquake-induced sliding displacements of slopes. Journal of Geotechnical and Geoenvironmental Engineering,134(6), 790-883. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(790)
  • Schanz, T., Vermeer, P.A., & Bonnier, P.G. (1999). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics, 281-296. https://doi.org/10.1201/9781315138206-27
  • Shi, C., Qiao, T., Xue, D., Wu, S., & Zhang, C. (2025). Dynamic responses and stability analysis of a large-scale slope deposit under non-uniform seismic input. Geoenvironmental Disasters, 12(19). https://doi.org/10.1186/s40677-025-00322-y
  • Ullah, S., Ren, G., Ge, Y., & Kinyua, E. M. (2025). Dynamic Slope Stability Assessment Under Blast-Induced Vibrations: A Case Study of the Saindak Copper-Gold Open-Pit Mine. Sustainability, 17(14), 6642. https://doi.org/10.3390/su17146642
  • Wei, Y., Jiaxin, L., Zonghong, L., Wei, W., & Xiaoyun, S. (2020). Computers and geotechnics a strength reduction method based on the generalized hoek-brown (GHB) criterion for rock slope stability analysis. Computers and Geotechnics, 117(1), 103240. https://doi.org/10.1016/j.compgeo.2019.103240
  • Yamane, T. (2001). Temel regresyon analizi. Ankara: Gazi Kitabevi.
  • Yuan, W., Bai, B., Li, X., & Wang, H. (2013). A strength reduction method based on double reduction parameters and its application. Journal of Central South University, 20(9), 2555–2562. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937
  • Xu, L. (2025). Seismic slope stability analysis using modified pseudo-dynamic method. PLOS ONE, 20(8), e0330435. https://doi.org/10.1371/journal.pone.0330435
  • Zhang, F., Jia, S., & Gao, Y. (2024). Recent advances in stability analysis and design of 3D slopes. Frontiers in Built Environment, 10, 1410474. https://doi.org/10.3389/fbuil.2024.1410474
  • Zhang, Y., Chen, G., Zheng, L., Li, Y., & Zhuang, X. (2013). Effects of geometries on three-dimensional slope stability. Canadian Geotechnical Journal, 50(3), 233–249. https://doi.org/10.1139/cgj-2012-0279
  • Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method vol. 1: Basic formulation and linear problems. (4th ed.). London: McGraw-Hill
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Sibel Yalçın Tosunoğlu 0000-0003-2072-0083

Sabriye Banu İkizler 0000-0002-6820-5593

Berna Unutmaz 0000-0002-0242-1402

Publication Date December 3, 2025
Submission Date August 1, 2025
Acceptance Date November 11, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Yalçın Tosunoğlu, S., İkizler, S. B., & Unutmaz, B. (2025). DEPREM KAYNAKLI ŞEV DEFORMASYONLARININ TAHMİNİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1973-1982.