Research Article
BibTex RIS Cite

EYE DISEASE DETECTION WITH DEEP LEARNING MODELS SUPPORTED BY THE CBAM ATTENTION MECHANISM

Year 2025, Volume: 28 Issue: 4, 1983 - 1999, 03.12.2025

Abstract

Early diagnosis of eye diseases plays a critical role in treatment success and public health. With the widespread use of modern medical imaging methods, the development of automated diagnostic systems from retinal fundus images has become an important research area. In this study, the effects of integrating the Convolutional Block Attention Module (CBAM) into EfficientNetB0 and DenseNet121 architectures were investigated for the classification of cataract, diabetic retinopathy, glaucoma, and healthy subjects. Experimental results demonstrated that the CBAM attention mechanism enhances accuracy and generalization performance, particularly in distinguishing complex retinal findings. For DenseNet121, accuracy, precision, recall, and F1-score were obtained as 88.37%, 89.66%, 88.37%, and 88.52%, respectively. EfficientNetB0 achieved 96.32% accuracy, 96.34% precision, 96.32% recall, and 96.33% F1-score. After CBAM integration, the accuracy of DenseNet121 increased to 90.39% and its F1-score to 90.54%, while EfficientNetB0 improved to 96.56% accuracy and 96.57% F1-score. These results reveal that the incorporation of CBAM enhances the performance of deep learning models and significantly contributes to the development of reliable and clinically applicable systems for the automated detection of eye diseases

References

  • Al-Dulaimi, K., Chandran, V., Nguyen, K., Banks, J., & Tomeo-Reyes, I. (2019). Benchmarking HEp-2 specimen cells classification using linear discriminant analysis on higher order spectra features of cell shape. Pattern Recognition Letters, 125, 534–541. https://doi.org/10.1016/j.patrec.2019.06.020
  • Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C., Awwal, A. A. S., & Asari, V. K. (2019). A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics, 8(3), Article 3. https://doi.org/10.3390/electronics8030292
  • Alsohemi, R., & Dardouri, S. (2025). Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture. Journal of Imaging, 11(8), 279. https://doi.org/10.3390/jimaging11080279
  • Altuwaijri, G. A., & Muhammad, G. (2022). Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks. Bioengineering, 9(7), Article 7. https://doi.org/10.3390/bioengineering9070323
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
  • Amrit, C., Paauw, T., Aly, R., & Lavric, M. (2017). Identifying child abuse through text mining and machine learning. Expert Systems with Applications, 88, 402–418. https://doi.org/10.1016/j.eswa.2017.06.035
  • Balcı, M., & Alkan, A. (2024). Identification of wart treatment evaluation by using optimum ensemble based classification techniques. Biomedical Signal Processing and Control, 95, 106491. https://doi.org/10.1016/j.bspc.2024.106491
  • Bourne, R., Steinmetz, J. D., Flaxman, S., Briant, P. S., Taylor, H. R., Resnikoff, S., Casson, R. J., Abdoli, A., Abu-Gharbieh, E., Afshin, A., Ahmadieh, H., Akalu, Y., Alamneh, A. A., Alemayehu, W., Alfaar, A. S., Alipour, V., Anbesu, E. W., Androudi, S., Arabloo, J., … Vos, T. (2021). Trends in prevalence of blindness and distance and near vision impairment over 30 years: An analysis for the Global Burden of Disease Study. The Lancet Global Health, 9(2), e130–e143. https://doi.org/10.1016/S2214-109X(20)30425-3
  • Campbell, J. P., Brown, J., Chan, R. V. P., Dy, J., Ioannidis, S., Erdogmus, D., Kalpathy-Cramer, J., & Chiang, M. F. (2018). Automated diagnosis of plus disease in retinopathy of prematurity using deep learning. Journal of American Association for Pediatric Ophthalmology and Strabismus, 22(4), e12. https://doi.org/10.1016/j.jaapos.2018.07.036
  • Cao, K., Zhao, M., Geng, M., Zheng, S., & Jung, H. (2025). Left ventricular segmentation method based on optimized UNet and improved CBAM: ESV and EDV tracking study. PLOS ONE, 20(6), e0325794. https://doi.org/10.1371/journal.pone.0325794
  • Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (pp. 213–229). Springer International Publishing. https://doi.org/10.1007/978-3-030-58452-8_13
  • Cho, Y.-S., Song, H.-J., Han, J.-H., & Kim, Y.-S. (2024). Attention Mechanism-Based Glaucoma Classification Model Using Retinal Fundus Images. Sensors, 24(14), 4684. https://doi.org/10.3390/s24144684
  • Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable Convolutional Networks. 764–773. https://openaccess.thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_ICCV_20 17_paper.html
  • De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., van den Driessche, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A., … Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342–1350. https://doi.org/10.1038/s41591-018-0107-6
  • Deldjoo, Y., Elahi, M., Cremonesi, P., Garzotto, F., Piazzolla, P., & Quadrana, M. (2016). Content-Based Video Recommendation System Based on Stylistic Visual Features. Journal on Data Semantics, 5(2), 99–113. https://doi.org/10.1007/s13740-016-0060-9
  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (No. arXiv:2010.11929). arXiv. https://doi.org/10.48550/arXiv.2010.11929 Eye_diseases_classification. (n.d.). Retrieved June 24, 2025, from https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification
  • Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J. H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G. A., Tahhan, N., Wong, T. Y., Taylor, H. R., … Zheng, Y. (2017). Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. The Lancet Global Health, 5(12), e1221–e1234. https://doi.org/10.1016/S2214-109X(17)30393-5
  • Foster, A., & Resnikoff, S. (2005). The impact of Vision 2020 on global blindness. Eye, 19(10), 1133–1135. https://doi.org/10.1038/sj.eye.6701973
  • Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., & Lu, H. (2019). Dual Attention Network for Scene Segmentation. 3146–3154. https://openaccess.thecvf.com/content_CVPR_2019/html/Fu_Dual_Attention_Network_for_Scene_ Segmentation_CVPR_2019_paper.html
  • Goh, J. H. L., Ang, E., Srinivasan, S., Lei, X., Loh, J., Quek, T. C., Xue, C., Xu, X., Liu, Y., Cheng, C.-Y., Rajapakse, J. C., & Tham, Y.-C. (2024). Comparative Analysis of Vision Transformers and Conventional Convolutional Neural Networks in Detecting Referable Diabetic Retinopathy. Ophthalmology Science, 4(6). https://doi.org/10.1016/j.xops.2024.100552
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 770–778. https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
  • Hossain, E., Khan, I., Un-Noor, F., Sikander, S. S., & Sunny, Md. S. H. (2019). Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review. IEEE Access, 7, 13960–13988. https://doi.org/10.1109/ACCESS.2019.2894819
  • Huang, K. A., & Prakash, N. (2025). Evaluating the Impact of Attention Mechanisms on a Fine-Tuned Neural Network for Magnetic Resonance Imaging Tumor Classification: A Comparative Analysis. Cureus. https://doi.org/10.7759/cureus.80872
  • Islam, R., & Hossain, S. (2025). Enhanced Brain Tumor Segmentation Using CBAM-Integrated Deep Learning and Area Quantification. International Journal of Biomedical Imaging, 2025, 2149042. https://doi.org/10.1155/ijbi/2149042
  • Ji, Z., Li, S., Zhang, H., Chen, C., Xu, Q., Li, J., & Wang, H. (2025). CBAM-DeepConvNet: Convolutional Block Attention Module-Deep Convolutional Neural Network for asymmetric visual evoked potentials recognition. Brain-Apparatus Communication: A Journal of Bacomics, 4(1), 2489396. https://doi.org/10.1080/27706710.2025.2489396
  • Jin, K., & Ye, J. (2022). Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. Advances in Ophthalmology Practice and Research, 2(3), 100078. https://doi.org/10.1016/j.aopr.2022.100078
  • Lee, T. K., Kim, S. Y., Choi, H. J., Choe, E. K., & Sohn, K.-A. (2025). Vision transformer based interpretable metabolic syndrome classification using retinal Images. NPJ Digital Medicine, 8, 205. https://doi.org/10.1038/s41746-025-01588-0
  • Lin, A. (2025). Efficient fusion transformer model for accurate classification of eye diseases. Scientific Reports, 15(1), 36223. https://doi.org/10.1038/s41598-025-20226-z
  • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26. https://doi.org/10.1016/j.neucom.2016.12.038
  • Novely, N., Mahmud Shuvo, S., & Faruk, Md. F. (2025). Improving Pre-Trained CNNs with CBAM and Skip Connections for Multi-Class Retinal Diseases Classification using OCT Images. Proceedings of the 3rd International Conference on Computing Advancements, 946–953. https://doi.org/10.1145/3723178.3723304
  • Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen, S.-C., & Iyengar, S. S. (2018). A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv., 51(5), 92:1-92:36. https://doi.org/10.1145/3234150
  • Rozenwald, M. B., Galitsyna, A. A., Sapunov, G. V., Khrameeva, E. E., & Gelfand, M. S. (2020). A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features. PeerJ Computer Science, 6, e307. https://doi.org/10.7717/peerj-cs.307
  • Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., & Babaeizadeh, S. (2018). Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. Journal of Electrocardiology, 51(6, Supplement), S18–S21. https://doi.org/10.1016/j.jelectrocard.2018.08.008
  • Ting, D. S. W., Cheung, C. Y.-L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I. Y., Lee, S. Y., Wong, E. Y. M., Sabanayagam, C., Baskaran, M., Ibrahim, F., Tan, N. C., Finkelstein, E. A., Lamoureux, E. L., Wong, I. Y., Bressler, N. M., … Wong, T. Y. (2017). Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA, 318(22), 2211–2223. https://doi.org/10.1001/jama.2017.18152
  • Urban, G., Subrahmanya, N., & Baldi, P. (2018). Inner and Outer Recursive Neural Networks for Chemoinformatics Applications. Journal of Chemical Information and Modeling, 58(2), 207–211. https://doi.org/10.1021/acs.jcim.7b00384
  • Vanaja, C. B., & Prakasam, P. (2025). Convolutional block attention gate-based Unet framework for microaneurysm segmentation using retinal fundus images. BMC Medical Imaging, 25(1), 83. https://doi.org/10.1186/s12880-025-01625-0
  • Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). CBAM: Convolutional Block Attention Module. 3–19. https://openaccess.thecvf.com/content_ECCV_2018/html/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.html
  • World Health Organization. (2019). World report on vision. World Health Organization. https://iris.who.int/handle/10665/328717
  • Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual learning for image steganalysis. Multimedia Tools and Applications, 77(9), 10437–10453. https://doi.org/10.1007/s11042-017-4440-4
  • Xiao, X., Xu, M., Han, J., Yin, E., Liu, S., Zhang, X., Jung, T.-P., & Ming, D. (2021). Enhancement for P300-speller classification using multi-window discriminative canonical pattern matching. Journal of Neural Engineering, 18(4), 046079. https://doi.org/10.1088/1741-2552/ac028b
  • Yang, Y., Cai, Z., Qiu, S., & Xu, P. (2024). Vision transformer with masked autoencoders for referable diabetic retinopathy classification based on large-size retina image. PLOS ONE, 19(3), e0299265. https://doi.org/10.1371/journal.pone.0299265
  • Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., & Wang, J. (2021). OCNet: Object Context Network for Scene Parsing (No. arXiv:1809.00916). arXiv. https://doi.org/10.48550/arXiv.1809.00916
  • Zhang, B., He, W., Wang, R., Lin, J., & Kuang, H. (2025). Improved GoogLeNet based on CBAM module for fundus disease classification network. Second International Conference on Big Data, Computational Intelligence, and Applications (BDCIA 2024), 13550, 511–517. https://doi.org/10.1117/12.3059839
  • Zhao, L., Zhang, H., Sun, X., Ouyang, Z., Xu, C., & Qin, X. (2024). Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks. Information, 15(12), 788. https://doi.org/10.3390/info15120788

CBAM DİKKAT MEKANİZMASI İLE DESTEKLENMİŞ DERİN ÖĞRENME MODELLERİYLE GÖZ HASTALIKLARININ TESPİTİ

Year 2025, Volume: 28 Issue: 4, 1983 - 1999, 03.12.2025

Abstract

Göz hastalıklarının erken teşhisi, tedavi başarısı ve toplum sağlığı açısından kritik bir rol oynamaktadır. Modern tıbbi görüntüleme yöntemlerinin yaygınlaşmasıyla birlikte, retina fundus görüntülerinden otomatik tanı sistemlerinin geliştirilmesi önemli bir araştırma alanı hâline gelmiştir. Bu çalışmada, katarakt, diyabetik retinopati, glokom ve sağlıklı bireylerin sınıflandırılması amacıyla EfficientNetB0 ve DenseNet121 mimarileri ile Convolutional Block Attention Module (CBAM) entegrasyonunun etkileri incelenmiştir. Deneysel sonuçlar, CBAM dikkat mekanizmasının özellikle karmaşık retinal bulguların ayırt edilmesinde doğruluk ve genelleme performansını artırdığını göstermiştir. DenseNet121 modeli için doğruluk %88,37, kesinlik %89,66, duyarlılık %88,37 ve F1 skoru %88,52 olarak elde edilmiştir. EfficientNetB0 modeli ise %96,32 doğruluk, %96,34 kesinlik, %96,32 duyarlılık ve %96,33 F1 skoruna ulaşmıştır. CBAM entegrasyonu sonrası DenseNet121’in doğruluğu %90,39’a, F1 skoru %90,54’e; EfficientNetB0’un doğruluğu %96,56’ya, F1 skoru ise %96,57’ye yükselmiştir. Sonuçlar, CBAM entegrasyonunun derin öğrenme modellerinin başarımını artırdığını ve otomatik göz hastalığı tespitinde güvenilir, klinik olarak uygulanabilir sistemlerin geliştirilmesine önemli katkı sağladığını ortaya koymaktadır.

References

  • Al-Dulaimi, K., Chandran, V., Nguyen, K., Banks, J., & Tomeo-Reyes, I. (2019). Benchmarking HEp-2 specimen cells classification using linear discriminant analysis on higher order spectra features of cell shape. Pattern Recognition Letters, 125, 534–541. https://doi.org/10.1016/j.patrec.2019.06.020
  • Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C., Awwal, A. A. S., & Asari, V. K. (2019). A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics, 8(3), Article 3. https://doi.org/10.3390/electronics8030292
  • Alsohemi, R., & Dardouri, S. (2025). Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture. Journal of Imaging, 11(8), 279. https://doi.org/10.3390/jimaging11080279
  • Altuwaijri, G. A., & Muhammad, G. (2022). Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks. Bioengineering, 9(7), Article 7. https://doi.org/10.3390/bioengineering9070323
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
  • Amrit, C., Paauw, T., Aly, R., & Lavric, M. (2017). Identifying child abuse through text mining and machine learning. Expert Systems with Applications, 88, 402–418. https://doi.org/10.1016/j.eswa.2017.06.035
  • Balcı, M., & Alkan, A. (2024). Identification of wart treatment evaluation by using optimum ensemble based classification techniques. Biomedical Signal Processing and Control, 95, 106491. https://doi.org/10.1016/j.bspc.2024.106491
  • Bourne, R., Steinmetz, J. D., Flaxman, S., Briant, P. S., Taylor, H. R., Resnikoff, S., Casson, R. J., Abdoli, A., Abu-Gharbieh, E., Afshin, A., Ahmadieh, H., Akalu, Y., Alamneh, A. A., Alemayehu, W., Alfaar, A. S., Alipour, V., Anbesu, E. W., Androudi, S., Arabloo, J., … Vos, T. (2021). Trends in prevalence of blindness and distance and near vision impairment over 30 years: An analysis for the Global Burden of Disease Study. The Lancet Global Health, 9(2), e130–e143. https://doi.org/10.1016/S2214-109X(20)30425-3
  • Campbell, J. P., Brown, J., Chan, R. V. P., Dy, J., Ioannidis, S., Erdogmus, D., Kalpathy-Cramer, J., & Chiang, M. F. (2018). Automated diagnosis of plus disease in retinopathy of prematurity using deep learning. Journal of American Association for Pediatric Ophthalmology and Strabismus, 22(4), e12. https://doi.org/10.1016/j.jaapos.2018.07.036
  • Cao, K., Zhao, M., Geng, M., Zheng, S., & Jung, H. (2025). Left ventricular segmentation method based on optimized UNet and improved CBAM: ESV and EDV tracking study. PLOS ONE, 20(6), e0325794. https://doi.org/10.1371/journal.pone.0325794
  • Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (pp. 213–229). Springer International Publishing. https://doi.org/10.1007/978-3-030-58452-8_13
  • Cho, Y.-S., Song, H.-J., Han, J.-H., & Kim, Y.-S. (2024). Attention Mechanism-Based Glaucoma Classification Model Using Retinal Fundus Images. Sensors, 24(14), 4684. https://doi.org/10.3390/s24144684
  • Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable Convolutional Networks. 764–773. https://openaccess.thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_ICCV_20 17_paper.html
  • De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., van den Driessche, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A., … Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342–1350. https://doi.org/10.1038/s41591-018-0107-6
  • Deldjoo, Y., Elahi, M., Cremonesi, P., Garzotto, F., Piazzolla, P., & Quadrana, M. (2016). Content-Based Video Recommendation System Based on Stylistic Visual Features. Journal on Data Semantics, 5(2), 99–113. https://doi.org/10.1007/s13740-016-0060-9
  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (No. arXiv:2010.11929). arXiv. https://doi.org/10.48550/arXiv.2010.11929 Eye_diseases_classification. (n.d.). Retrieved June 24, 2025, from https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification
  • Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J. H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G. A., Tahhan, N., Wong, T. Y., Taylor, H. R., … Zheng, Y. (2017). Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. The Lancet Global Health, 5(12), e1221–e1234. https://doi.org/10.1016/S2214-109X(17)30393-5
  • Foster, A., & Resnikoff, S. (2005). The impact of Vision 2020 on global blindness. Eye, 19(10), 1133–1135. https://doi.org/10.1038/sj.eye.6701973
  • Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., & Lu, H. (2019). Dual Attention Network for Scene Segmentation. 3146–3154. https://openaccess.thecvf.com/content_CVPR_2019/html/Fu_Dual_Attention_Network_for_Scene_ Segmentation_CVPR_2019_paper.html
  • Goh, J. H. L., Ang, E., Srinivasan, S., Lei, X., Loh, J., Quek, T. C., Xue, C., Xu, X., Liu, Y., Cheng, C.-Y., Rajapakse, J. C., & Tham, Y.-C. (2024). Comparative Analysis of Vision Transformers and Conventional Convolutional Neural Networks in Detecting Referable Diabetic Retinopathy. Ophthalmology Science, 4(6). https://doi.org/10.1016/j.xops.2024.100552
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 770–778. https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
  • Hossain, E., Khan, I., Un-Noor, F., Sikander, S. S., & Sunny, Md. S. H. (2019). Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review. IEEE Access, 7, 13960–13988. https://doi.org/10.1109/ACCESS.2019.2894819
  • Huang, K. A., & Prakash, N. (2025). Evaluating the Impact of Attention Mechanisms on a Fine-Tuned Neural Network for Magnetic Resonance Imaging Tumor Classification: A Comparative Analysis. Cureus. https://doi.org/10.7759/cureus.80872
  • Islam, R., & Hossain, S. (2025). Enhanced Brain Tumor Segmentation Using CBAM-Integrated Deep Learning and Area Quantification. International Journal of Biomedical Imaging, 2025, 2149042. https://doi.org/10.1155/ijbi/2149042
  • Ji, Z., Li, S., Zhang, H., Chen, C., Xu, Q., Li, J., & Wang, H. (2025). CBAM-DeepConvNet: Convolutional Block Attention Module-Deep Convolutional Neural Network for asymmetric visual evoked potentials recognition. Brain-Apparatus Communication: A Journal of Bacomics, 4(1), 2489396. https://doi.org/10.1080/27706710.2025.2489396
  • Jin, K., & Ye, J. (2022). Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. Advances in Ophthalmology Practice and Research, 2(3), 100078. https://doi.org/10.1016/j.aopr.2022.100078
  • Lee, T. K., Kim, S. Y., Choi, H. J., Choe, E. K., & Sohn, K.-A. (2025). Vision transformer based interpretable metabolic syndrome classification using retinal Images. NPJ Digital Medicine, 8, 205. https://doi.org/10.1038/s41746-025-01588-0
  • Lin, A. (2025). Efficient fusion transformer model for accurate classification of eye diseases. Scientific Reports, 15(1), 36223. https://doi.org/10.1038/s41598-025-20226-z
  • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26. https://doi.org/10.1016/j.neucom.2016.12.038
  • Novely, N., Mahmud Shuvo, S., & Faruk, Md. F. (2025). Improving Pre-Trained CNNs with CBAM and Skip Connections for Multi-Class Retinal Diseases Classification using OCT Images. Proceedings of the 3rd International Conference on Computing Advancements, 946–953. https://doi.org/10.1145/3723178.3723304
  • Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen, S.-C., & Iyengar, S. S. (2018). A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv., 51(5), 92:1-92:36. https://doi.org/10.1145/3234150
  • Rozenwald, M. B., Galitsyna, A. A., Sapunov, G. V., Khrameeva, E. E., & Gelfand, M. S. (2020). A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features. PeerJ Computer Science, 6, e307. https://doi.org/10.7717/peerj-cs.307
  • Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., & Babaeizadeh, S. (2018). Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. Journal of Electrocardiology, 51(6, Supplement), S18–S21. https://doi.org/10.1016/j.jelectrocard.2018.08.008
  • Ting, D. S. W., Cheung, C. Y.-L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I. Y., Lee, S. Y., Wong, E. Y. M., Sabanayagam, C., Baskaran, M., Ibrahim, F., Tan, N. C., Finkelstein, E. A., Lamoureux, E. L., Wong, I. Y., Bressler, N. M., … Wong, T. Y. (2017). Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA, 318(22), 2211–2223. https://doi.org/10.1001/jama.2017.18152
  • Urban, G., Subrahmanya, N., & Baldi, P. (2018). Inner and Outer Recursive Neural Networks for Chemoinformatics Applications. Journal of Chemical Information and Modeling, 58(2), 207–211. https://doi.org/10.1021/acs.jcim.7b00384
  • Vanaja, C. B., & Prakasam, P. (2025). Convolutional block attention gate-based Unet framework for microaneurysm segmentation using retinal fundus images. BMC Medical Imaging, 25(1), 83. https://doi.org/10.1186/s12880-025-01625-0
  • Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). CBAM: Convolutional Block Attention Module. 3–19. https://openaccess.thecvf.com/content_ECCV_2018/html/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.html
  • World Health Organization. (2019). World report on vision. World Health Organization. https://iris.who.int/handle/10665/328717
  • Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual learning for image steganalysis. Multimedia Tools and Applications, 77(9), 10437–10453. https://doi.org/10.1007/s11042-017-4440-4
  • Xiao, X., Xu, M., Han, J., Yin, E., Liu, S., Zhang, X., Jung, T.-P., & Ming, D. (2021). Enhancement for P300-speller classification using multi-window discriminative canonical pattern matching. Journal of Neural Engineering, 18(4), 046079. https://doi.org/10.1088/1741-2552/ac028b
  • Yang, Y., Cai, Z., Qiu, S., & Xu, P. (2024). Vision transformer with masked autoencoders for referable diabetic retinopathy classification based on large-size retina image. PLOS ONE, 19(3), e0299265. https://doi.org/10.1371/journal.pone.0299265
  • Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., & Wang, J. (2021). OCNet: Object Context Network for Scene Parsing (No. arXiv:1809.00916). arXiv. https://doi.org/10.48550/arXiv.1809.00916
  • Zhang, B., He, W., Wang, R., Lin, J., & Kuang, H. (2025). Improved GoogLeNet based on CBAM module for fundus disease classification network. Second International Conference on Big Data, Computational Intelligence, and Applications (BDCIA 2024), 13550, 511–517. https://doi.org/10.1117/12.3059839
  • Zhao, L., Zhang, H., Sun, X., Ouyang, Z., Xu, C., & Qin, X. (2024). Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks. Information, 15(12), 788. https://doi.org/10.3390/info15120788
There are 44 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Rıdvan Coşkun 0000-0002-3673-6306

Duygu Kaya 0000-0002-6453-631X

Hasan Güler 0000-0002-9917-3619

Publication Date December 3, 2025
Submission Date August 6, 2025
Acceptance Date November 14, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Coşkun, R., Kaya, D., & Güler, H. (2025). EYE DISEASE DETECTION WITH DEEP LEARNING MODELS SUPPORTED BY THE CBAM ATTENTION MECHANISM. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1983-1999.