Research Article
BibTex RIS Cite

EFFECT OF WEAVE TYPE ON THE MECHANICAL AND IMPACT PROPERTIES OF GLASS/JUTE HYBRID WOVEN COMPOSITES

Year 2025, Volume: 28 Issue: 4, 2110 - 2123, 03.12.2025

Abstract

Natural fiber-reinforced composites, despite their sustainability and cost-effectiveness, exhibit lower mechanical properties compared to high-performance fibers such as glass and carbon, which are widely used in the composite industry. This study aims to examine the effects of different weave types on the mechanical and impact properties of Glass/Jute hybrid woven composites using the intra-layer hybridization method. Flexural and Charpy impact tests were performed, and damage in the composites was evaluated through ultrasonic C-scan testing; the results were analyzed using image-processing algorithms. Accordingly, the weft direction, in which the high-performance glass fibers were placed, provided the highest mechanical properties for both weave types compared to the warp direction containing jute fibers. The twill weave exhibited better mechanical performance than the plain weave due to its higher number of weft yarns (glass fibers) per unit area. Twill-woven composites exhibited approximately 3.5 times higher flexural strength and about 20% greater impact energy absorption in the weft direction compared to plain-woven composites. Overall, the findings demonstrate that weave type and fiber orientation play a decisive role in the flexural and impact behavior of hybrid woven composites.

References

  • Abd El-baky, M. A. (2017). Evaluation of mechanical properties of jute/glass/carbon fibers reinforced hybrid composites. Fibers and Polymers, 18(12), 2417–2432. https://doi.org/10.1007/s12221-017-7682-x
  • Ahmed, K. S., Vijayarangan, S., & Rajput, C. (2006). Mechanical behavior of isothalic polyester-based untreated woven jute and glass fabric hybrid composites. Journal of Reinforced Plastics and Composites, 25(15), 1549–1569. https://doi.org/10.1177/0731684406066747
  • Altaee, M. A., & Mostafa, N. H. (2023). Mechanical properties of interply and intraply hybrid laminates based on jute-glass/epoxy composites. Journal of Engineering and Applied Science, 70(1). https://doi.org/10.1186/s44147-023-00293-7
  • Bharati, Subrato, and Prajoy Podder. (2020). “Performance Analysis of Gaussian, Median, Mean and Weiner Filters on Biomedical Image De-Noising.” ttps://doi.org/10.20944/PREPRINTS202005.0053.V1.
  • Deng, G., and L. W. Cahill. (1994). “Adaptive Gaussian Filter for Noise Reduction and Edge Detection.” IEEE Nuclear Science Symposium & Medical Imaging Conference (pt 3):1615–19. https://doi.org/10.1109/NSSMIC.1993.373563.
  • Faheed, Noor K. (2024). “Advantages of Natural Fiber Composites for Biomedical Applications: A Review of Recent Advances.” Emergent Materials 2024 7:1 7(1):63–75 https://doi.org/10.1007/S42247-023-00620-X.
  • García, M., Garmendia, I., & García, J. (2008). Influence of natural fiber type in eco-composites. Journal of Applied Polymer Science, 107(5), 2994–3004. https://doi.org/10.1002/app.27519
  • Gujjala, R., Ojha, S., Acharya, S. K., & Pal, S. K. (2014). Mechanical properties of woven jute-glass hybrid-reinforced epoxy composite. Journal of Composite Materials, 48(28), 3445–3455. https://doi.org/10.1177/0021998313501924
  • Gungor, Murat Alparslan, and Irfan Karagoz. (2017). “The Effects of the Median Filter with Different Window Sizes for Ultrasound Image.” 2016 2nd IEEE International Conference on Computer and Communications, ICCC 2016 - Proceedings 549–52. https://doi.org/10.1109/CompComm.2016.7924761
  • Gupta, A., Shohel, S. M., Singh, M., & Singh, J. (2024). Study on mechanical properties of natural fiber (Jute)/synthetic fiber (Glass) reinforced polymer hybrid composite by representative volume element using finite element analysis: A numerical approach and validated by experiment. Hybrid Advances, 6. https://doi.org/10.1016/j.hybadv.2024.100239
  • Hasan, M. M., Islam, M. A., & Hassan, T. (2024). Analysis of jute-glass fiber reinforced epoxy hybrid composite. Heliyon, 10(24). https://doi.org/10.1016/j.heliyon.2024.e40924
  • Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, Vol. 13, pp. 2442–2458. Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2021.06.014
  • Kaufmann, J., Alhayat G. Temesgen, and H. Cebulla. (2025). “A Comprehensive Review on Natural Fiber Reinforced Hybrid Composites Processing Techniques, Material Properties and Emerging Applications.” Discover Materials 2025 5:1 5(1):1–25. https://doi.org/10.1007/s43939-025-00419-z
  • Kaya, G. Y. (2019). Bending strength of intra-ply/inter-ply hybrid thermoplastic composites. Industria Textila, 70(1), 65–75. https://doi.org/10.35530/it.070.01.1533
  • Khalid, M. Y., Al Rashid, A., Arif, Z. U., Sheikh, M. F., Arshad, H., & Nasir, M. A. (2021). Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach. Results in Engineering, 10. https://doi.org/10.1016/j.rineng.2021.100232
  • Mahmud, S. H., Akram, M. W., Ferdous, S. M. R., Islam, D., Fatema, K., Chowdhury, M. S. A., Ovi, S. M. (2024). Fabrication and mechanical performance investigation of jute/glass fiber hybridized polymer composites: Effect of stacking sequences. Next Materials, 5. https://doi.org/10.1016/j.nxmate.2024.100236
  • May-Pat, A., Valadez-González, A., & Herrera-Franco, P. J. (2013). Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polymer Testing, 32(6), 1114–1122. https://doi.org/10.1016/J.POLYMERTESTING.2013.06.006
  • Mohamad, Muhammad Aizuddin, Aidah Jumahat, and Napisah Sapiai. (2023). “Flexural Analysis of Hemp, Kenaf and Glass Fibre-Reinforced Polyester Resin.” Biopolymer Composites: Production and Modification from Tropical Wood and Non-Wood Raw Materials 9(1):231–46. https://doi.org/10.1016/j.polymertesting.2012.05.011
  • Nor, A. F. M., Sultan, M. T. H., Hamdan, A., Azmi, A. M. R., & Jayakrisna, K. (2018). Hybrid Composites Based On Kenaf, Jute, Fiberglass Woven Fabrics: Tensile and Impact Properties. In Materials Today: Proceedings (Vol. 5). Retrieved from https://doi.org/10.1016/j.matpr.2018.01.144
  • Ouarhim, W., Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. el kacem. (2020). Hybrid composites and intra-ply hybrid composites based on jute and glass fibers: A comparative study on moisture absorption and mechanical properties. Materials Today Communications, 22. https://doi.org/10.1016/j.mtcomm.2019.100861
  • Owen, M. M., Wong, L. S., Md Din, N. B., Achukwu, E. O., Romli, A. Z., & Shuib, S. (2025). Performance characterization of VARI-processed plain-woven glass/jute hybrid epoxy composites for renewable energy infrastructures: Experimental–numerical synergy. Journal of Materials Research and Technology, 37, 4232–4247. https://doi.org/10.1016/j.jmrt.2025.07.110
  • Öztaş, Burak, Yasemin Korkmaz, and Halil İbrahim Çelik. (2024). “Image Analyses of Artificially Damaged Carbon/Glass/ Epoxy Composites before and after Impact Load.” Heliyon 10(4):e25876. doi:10.1016/j.heliyon.2024.e25876.
  • Palanisamy, Sivasubramanian, Thulasi Mani Murugesan, Murugesan Palaniappan, Carlo Santulli, and Nadir Ayrilmiş. (2024). “Fostering Sustainability: The Environmental Advantages of Natural Fiber Composite Materials – a Mini Review.” Environmental Research and Technology 7(2):256–69. doi:10.35208/ERT.1397380.
  • Rabbi, Sanaul, Snigdha Das, Sanjida Sharmin, and Abdullah Al Mamun. (2024). “Effect of Nanomaterials on the Mechanical and Morphological Properties of Jute-GFRP Hybrid Nanocomposites.” Malaysian Journal on Composites Science and Manufacturing 14(1):16–33. doi:10.37934/MJCSM.14.1.1633.
  • Selver, E., & Kaya, G. (2019). Low velocity impact behaviour of carbon/xps sandwich composites. Tekstil ve Muhendis, 26(116), 353–359. https://doi.org/10.7216/1300759920192611607
  • Sezgin, H., & Berkalp, O. B. (2017). The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. Journal of Industrial Textiles, 47(3), 283–296. https://doi.org/10.1177/1528083716644290
  • Ueng, Shyh Kuang, Cho Li Yen, and Guan Zhi Chen. (2014). “Ultrasound Image Enhancement Using Structure-Based Filtering.” Computational and Mathematical Methods in Medicine 2014:758439. doi:10.1155/2014/758439.

CAM/JÜT HİBRİT DOKUMA KOMPOZİTLERDE ÖRGÜ TİPİNİN MEKANİK VE DARBE ÖZELLİKLERİNE ETKİSİ

Year 2025, Volume: 28 Issue: 4, 2110 - 2123, 03.12.2025

Abstract

Doğal lif takviyeli kompozitler sahip oldukları sürdürülebilir ve düşük maliyet avantajlarına karşın, kompozit endüstrisinde yaygın olarak kullanılan cam ve karbon gibi yüksek performanslı liflere kıyasla düşük mekanik özellikler göstermektedir. Bu çalışmanın amacı katman içi (intra-layer) hibritleme metodu kullanılarak farklı örgü tiplerinin Cam/Jüt hibrit dokuma kompozitlerin mekanik ve darbe özelliklerine etkisinin araştırılmasıdır. Bu kapsamda eğme ve Charpy darbe testleri gerçekleştirilmiştir. Kompozitlerde meydana gelen hasar ultrasonik C-tarama yöntemi ile test edilmiş, elde edilen veriler geliştirilen görüntü işleme algoritmaları ile analiz edilmiştir. Buna göre; yüksek performanslı cam lifinin kullanıldığı atkı yönü, jüt lifinin kullanıldığı çözgü yönüne kıyasla her iki örgü tipi için de mekanik özellikler bakımından en yüksek değerleri vermiştir. Dimi örgü, birim alanda daha fazla atkı ipliği (cam lifi) içermesi nedeniyle bezayağına kıyasla daha iyi mekanik performans sergilemiştir. Dimi örgü yapısına sahip kompozitler, bezayağı örgü yapısına sahip kompozitlerden atkı yönünde yaklaşık 3,5 kat civarında daha fazla eğme dayanımı sergilemiştir. Charpy darbe testi sonuçlarında ise Dimi örgü yapısına sahip kompozitler, bezayağı örgü yapısına sahip kompozitlere kıyasla atkı yönünde %20 oranında daha fazla enerji absorplama kapasitesine sahip olduğu tespit edilmiştir. Elde edilen sonuçlar, örgü yapısının ve atkı/çözgü yönündeki yerleşen liflerin, hibrit dokuma kompozitlerin eğilme ve darbe performansını belirleyici bir şekilde etkilediğini göstermektedir.

References

  • Abd El-baky, M. A. (2017). Evaluation of mechanical properties of jute/glass/carbon fibers reinforced hybrid composites. Fibers and Polymers, 18(12), 2417–2432. https://doi.org/10.1007/s12221-017-7682-x
  • Ahmed, K. S., Vijayarangan, S., & Rajput, C. (2006). Mechanical behavior of isothalic polyester-based untreated woven jute and glass fabric hybrid composites. Journal of Reinforced Plastics and Composites, 25(15), 1549–1569. https://doi.org/10.1177/0731684406066747
  • Altaee, M. A., & Mostafa, N. H. (2023). Mechanical properties of interply and intraply hybrid laminates based on jute-glass/epoxy composites. Journal of Engineering and Applied Science, 70(1). https://doi.org/10.1186/s44147-023-00293-7
  • Bharati, Subrato, and Prajoy Podder. (2020). “Performance Analysis of Gaussian, Median, Mean and Weiner Filters on Biomedical Image De-Noising.” ttps://doi.org/10.20944/PREPRINTS202005.0053.V1.
  • Deng, G., and L. W. Cahill. (1994). “Adaptive Gaussian Filter for Noise Reduction and Edge Detection.” IEEE Nuclear Science Symposium & Medical Imaging Conference (pt 3):1615–19. https://doi.org/10.1109/NSSMIC.1993.373563.
  • Faheed, Noor K. (2024). “Advantages of Natural Fiber Composites for Biomedical Applications: A Review of Recent Advances.” Emergent Materials 2024 7:1 7(1):63–75 https://doi.org/10.1007/S42247-023-00620-X.
  • García, M., Garmendia, I., & García, J. (2008). Influence of natural fiber type in eco-composites. Journal of Applied Polymer Science, 107(5), 2994–3004. https://doi.org/10.1002/app.27519
  • Gujjala, R., Ojha, S., Acharya, S. K., & Pal, S. K. (2014). Mechanical properties of woven jute-glass hybrid-reinforced epoxy composite. Journal of Composite Materials, 48(28), 3445–3455. https://doi.org/10.1177/0021998313501924
  • Gungor, Murat Alparslan, and Irfan Karagoz. (2017). “The Effects of the Median Filter with Different Window Sizes for Ultrasound Image.” 2016 2nd IEEE International Conference on Computer and Communications, ICCC 2016 - Proceedings 549–52. https://doi.org/10.1109/CompComm.2016.7924761
  • Gupta, A., Shohel, S. M., Singh, M., & Singh, J. (2024). Study on mechanical properties of natural fiber (Jute)/synthetic fiber (Glass) reinforced polymer hybrid composite by representative volume element using finite element analysis: A numerical approach and validated by experiment. Hybrid Advances, 6. https://doi.org/10.1016/j.hybadv.2024.100239
  • Hasan, M. M., Islam, M. A., & Hassan, T. (2024). Analysis of jute-glass fiber reinforced epoxy hybrid composite. Heliyon, 10(24). https://doi.org/10.1016/j.heliyon.2024.e40924
  • Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, Vol. 13, pp. 2442–2458. Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2021.06.014
  • Kaufmann, J., Alhayat G. Temesgen, and H. Cebulla. (2025). “A Comprehensive Review on Natural Fiber Reinforced Hybrid Composites Processing Techniques, Material Properties and Emerging Applications.” Discover Materials 2025 5:1 5(1):1–25. https://doi.org/10.1007/s43939-025-00419-z
  • Kaya, G. Y. (2019). Bending strength of intra-ply/inter-ply hybrid thermoplastic composites. Industria Textila, 70(1), 65–75. https://doi.org/10.35530/it.070.01.1533
  • Khalid, M. Y., Al Rashid, A., Arif, Z. U., Sheikh, M. F., Arshad, H., & Nasir, M. A. (2021). Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach. Results in Engineering, 10. https://doi.org/10.1016/j.rineng.2021.100232
  • Mahmud, S. H., Akram, M. W., Ferdous, S. M. R., Islam, D., Fatema, K., Chowdhury, M. S. A., Ovi, S. M. (2024). Fabrication and mechanical performance investigation of jute/glass fiber hybridized polymer composites: Effect of stacking sequences. Next Materials, 5. https://doi.org/10.1016/j.nxmate.2024.100236
  • May-Pat, A., Valadez-González, A., & Herrera-Franco, P. J. (2013). Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polymer Testing, 32(6), 1114–1122. https://doi.org/10.1016/J.POLYMERTESTING.2013.06.006
  • Mohamad, Muhammad Aizuddin, Aidah Jumahat, and Napisah Sapiai. (2023). “Flexural Analysis of Hemp, Kenaf and Glass Fibre-Reinforced Polyester Resin.” Biopolymer Composites: Production and Modification from Tropical Wood and Non-Wood Raw Materials 9(1):231–46. https://doi.org/10.1016/j.polymertesting.2012.05.011
  • Nor, A. F. M., Sultan, M. T. H., Hamdan, A., Azmi, A. M. R., & Jayakrisna, K. (2018). Hybrid Composites Based On Kenaf, Jute, Fiberglass Woven Fabrics: Tensile and Impact Properties. In Materials Today: Proceedings (Vol. 5). Retrieved from https://doi.org/10.1016/j.matpr.2018.01.144
  • Ouarhim, W., Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. el kacem. (2020). Hybrid composites and intra-ply hybrid composites based on jute and glass fibers: A comparative study on moisture absorption and mechanical properties. Materials Today Communications, 22. https://doi.org/10.1016/j.mtcomm.2019.100861
  • Owen, M. M., Wong, L. S., Md Din, N. B., Achukwu, E. O., Romli, A. Z., & Shuib, S. (2025). Performance characterization of VARI-processed plain-woven glass/jute hybrid epoxy composites for renewable energy infrastructures: Experimental–numerical synergy. Journal of Materials Research and Technology, 37, 4232–4247. https://doi.org/10.1016/j.jmrt.2025.07.110
  • Öztaş, Burak, Yasemin Korkmaz, and Halil İbrahim Çelik. (2024). “Image Analyses of Artificially Damaged Carbon/Glass/ Epoxy Composites before and after Impact Load.” Heliyon 10(4):e25876. doi:10.1016/j.heliyon.2024.e25876.
  • Palanisamy, Sivasubramanian, Thulasi Mani Murugesan, Murugesan Palaniappan, Carlo Santulli, and Nadir Ayrilmiş. (2024). “Fostering Sustainability: The Environmental Advantages of Natural Fiber Composite Materials – a Mini Review.” Environmental Research and Technology 7(2):256–69. doi:10.35208/ERT.1397380.
  • Rabbi, Sanaul, Snigdha Das, Sanjida Sharmin, and Abdullah Al Mamun. (2024). “Effect of Nanomaterials on the Mechanical and Morphological Properties of Jute-GFRP Hybrid Nanocomposites.” Malaysian Journal on Composites Science and Manufacturing 14(1):16–33. doi:10.37934/MJCSM.14.1.1633.
  • Selver, E., & Kaya, G. (2019). Low velocity impact behaviour of carbon/xps sandwich composites. Tekstil ve Muhendis, 26(116), 353–359. https://doi.org/10.7216/1300759920192611607
  • Sezgin, H., & Berkalp, O. B. (2017). The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. Journal of Industrial Textiles, 47(3), 283–296. https://doi.org/10.1177/1528083716644290
  • Ueng, Shyh Kuang, Cho Li Yen, and Guan Zhi Chen. (2014). “Ultrasound Image Enhancement Using Structure-Based Filtering.” Computational and Mathematical Methods in Medicine 2014:758439. doi:10.1155/2014/758439.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials, Textile Technology
Journal Section Research Article
Authors

Burak Öztaş 0000-0002-8789-155X

Publication Date December 3, 2025
Submission Date October 21, 2025
Acceptance Date November 12, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Öztaş, B. (2025). CAM/JÜT HİBRİT DOKUMA KOMPOZİTLERDE ÖRGÜ TİPİNİN MEKANİK VE DARBE ÖZELLİKLERİNE ETKİSİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 2110-2123.