Research Article
BibTex RIS Cite
Year 2022, , 7 - 16, 03.03.2022
https://doi.org/10.17780/ksujes.1027395

Abstract

Supporting Institution

Mersin Üniversitesi BAP Birimi

Project Number

2019-1-AP4-3494

Thanks

This work was supported by the Mersin University Scientific Research Projects Unit (Project Number:2019-1-AP4-3494). Authors are grateful to MEU-BAP for supports.

References

  • Al-Amri, N., Tombuloglu, H., Slimani, Y., Akhtar, S., Barghouthi, M., Almessiere, M., Alshammari, T., Baykal, A., Sabit, H., Ercan, I., & Ozcelik, S. (2020). Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 194, 110377.
  • Bilen, S., & Sezen, Y. (1993). Toprak reaksiyonunun bitki besin elementleri elverişliliği üzerine etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 24(2), 156-166.
  • Bolat, İ., & Kara, Ö. (2017). Plant nutrients: Sources, functions, deficiencies and redundancy. J of Bartin Faculty of Forestry, 19(1), 218-228.
  • Borhan, M.S., Panigrahi, S., Satter, M.A. & Gu, H. (2017). Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information Processing in Agriculture, 4, 275-282.
  • Dağlioğlu, Y., & Yilmaz, H. Ö. (2018). Nanoparticle characterization methods and its importance in ecotoxicity experiments. Marmara Fen Bilimleri Dergisi,1, 1-17.
  • De Souza, A., Govea‑Alcaide, E., Masunaga, S. H., Fajardo‑Rosabal, L., Effenberger, F., Rossi, L. M., & Jardim R. F. (2019). Impact of Fe3O4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Applied Sciences, 1, 308.
  • De Souza-Torres, A., Govea-Alcaide, E., G´omez-Padilla, E., Masunaga, S. H., Effenberger, F. B., Rossi, L. M., L´opez-S´anchez, R., & Jardim, R. F. (2021). Fe3O4 nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil. Rhizosphere, 17, 100275.
  • Doğaroğlu, Z. G., Eren, A., & Baran, M. F. (2019). Effects of ZnO nanoparticles and ethylenediamine-N,N′- disuccinic acid on seed germination of four different plants. Global Challenges, 1800111.
  • Dray Jr., F. A., Center, T. D., & Mattison, E. D. (2012). In situ estimates of waterhyacinth leaf tissue nitrogen using a SPAD-502 chlorophyll meter. Aquatic Botany, 100, 72-75.
  • Feng, Y., Yang, J., Liu, W., Yan, Y., & Wang, Y. (2021). Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a Cd-contaminated alkaline soil. Journal of Hazardous Materials, 404, 124005.
  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science and Technology, 47, 10645−10652.
  • Girelli, A. M., Astolfi, M. L., & Scuto, F. R. (2020). Agro-industrial wastes as potential carriers for enzyme immobilization: A review. Chemosphere, 244, 125368.
  • Hawkins, T. S., Gardiner, E. S., & Comer, G. S. (2009). Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17, 123-127.
  • Iannone, M. F., Groppa, M. D., de Sousa, M. E., van Raap, M. B. F., & Benavides, M. P. (2016). Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environmental and Experimental Botany, 131, 77–88.
  • Iannone, M. F., Groppa, M. D., Zawoznik, M. S., Coral, D. F., van Raap, M. B. F., & Benavides, M. P. (2021). Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth. Ecotoxicology and Environmental Safety, 211, 111942.
  • Ji, R., Shi, W., Wang, Y., Zhang, H., & Min, J. (2020). Nondestructive estimation of bok choy nitrogen status with an active canopy sensor in comparison to a chlorophyll meter. Pedosphere, 30(6), 769–777.
  • Kermanian, M., Naghibi, M., & Sadighian, S. (2020). One-pot hydrothermal synthesis of a magnetic hydroxyapatite nanocomposite for MR imaging and pH-Sensitive drug delivery applications. Heliyon, 6:e04928.
  • Lin, F. F., Qiu, L. F., Deng, J. S., Shi, Y. Y., Chen, L. S., & Wang, K. (2010). Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture, 71S, 60–65.
  • Mezacasa, A.V., Queiroz, A.M., Graciano, D.E., Pontes, M.S., Santiago, E.F., Oliveira, I.P., Lopez, A.J., Casagrande, G.A., Scherer, M.D., dos Reis, D.D., Oliveira, S.L., & Caires, A.R.L. (2020). Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. Journal of Photochemistry & Photobiology A: Chemistry, 389, 1-8.
  • Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mat. Sci. and Eng.: B.,177(5), 421-427.
  • Rop, K., Karuku, G. N., Mbui, D., Michira, I., & Njomo, N. (2018). Formulation of slow release NPK fertilizer (cellulose-graft-poly (acrylamide) / nano-hydroxyapatite /soluble fertilizer) composite and evaluating its N mineralization potential. Annals of Agricultural Sciences, 63, 163–172.
  • Shankramma, K., Yallappa, S., Shivanna, M. B., & Manjanna, J. (2016). Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Applied Nanoscience, 6, 983–990.
  • Su, C. (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. Journal of Hazardous Materials, 322, 48-84.
  • Wang, Y., Wang, S., Xu, M., Xiao, L., Dai, Z., & Li, J. (2019). The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environmental Pollution, 249,1011-1018.
  • Yang, Z., Gong, X., & Zhang, C. (2010). Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications. Chemical Engineering Journal,165, 117–121.
  • Zhi-Hui, M., Lei, D., Fu-Zhou, D., Xiao-Juan, L., & Dan-Yu, Q. (2020). Angle effects of vegetation indices and the influence on prediction of SPAD values in soybean and maize. International Journal of Applied Earth Observation Geoinformation, 93, 102198.

The Ecotoxicological Evaluations of Fe3O4, HAp, and Fe3O4-HAp Nanocomposite on Wheat: Impact on Chlorophyll Content

Year 2022, , 7 - 16, 03.03.2022
https://doi.org/10.17780/ksujes.1027395

Abstract

Nanoparticles have an increasing accumulation and effect as day to day in aquatic, terrestrial and atmospheric environments, and one of the most basic factors determining these effects is their sizes. As the material size decreases, the distribution and accumulation of particles are facilitated and accelerated. In this study, the possible nanotoxicological effects of nanomagnetite (Fe3O4 NPs), hydroxyapatite (HAp) (synthesized by the recovery of waste eggshells) and Fe3O4-HAp nanocomposite on wheat germination percentage and chlorophyll production were evaluated. It was determined with SEM images that the Fe3O4 nanoparticles was in the size of 22-30 nm, while the Fe3O4-HAp was 90-350 nm. The presence of HAp particles caused a decreasing in the germination percentage compared to presence of only Fe3O4 nanoparticles, as like in the root elongation (20-27 %). The chlorophyll content was determined in the both aged and young leaves on second, third and fourth weeks of wheat plants. Results showed that wheat plants were sensitive in the early stage of plant growth (second week) to the all test chemicals. The presence of HAp in the growth media decreased the chlorophyll content of wheat because of their sizes. The maximum decreasing of chlorophyll content in wheat was observed at the 40 mg L-1 HAp treatment as 86 %. All the test chemicals used in this study uses in many areas, thus it should be detailed evaluated ecotoxicological aspect.

Project Number

2019-1-AP4-3494

References

  • Al-Amri, N., Tombuloglu, H., Slimani, Y., Akhtar, S., Barghouthi, M., Almessiere, M., Alshammari, T., Baykal, A., Sabit, H., Ercan, I., & Ozcelik, S. (2020). Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 194, 110377.
  • Bilen, S., & Sezen, Y. (1993). Toprak reaksiyonunun bitki besin elementleri elverişliliği üzerine etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 24(2), 156-166.
  • Bolat, İ., & Kara, Ö. (2017). Plant nutrients: Sources, functions, deficiencies and redundancy. J of Bartin Faculty of Forestry, 19(1), 218-228.
  • Borhan, M.S., Panigrahi, S., Satter, M.A. & Gu, H. (2017). Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information Processing in Agriculture, 4, 275-282.
  • Dağlioğlu, Y., & Yilmaz, H. Ö. (2018). Nanoparticle characterization methods and its importance in ecotoxicity experiments. Marmara Fen Bilimleri Dergisi,1, 1-17.
  • De Souza, A., Govea‑Alcaide, E., Masunaga, S. H., Fajardo‑Rosabal, L., Effenberger, F., Rossi, L. M., & Jardim R. F. (2019). Impact of Fe3O4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Applied Sciences, 1, 308.
  • De Souza-Torres, A., Govea-Alcaide, E., G´omez-Padilla, E., Masunaga, S. H., Effenberger, F. B., Rossi, L. M., L´opez-S´anchez, R., & Jardim, R. F. (2021). Fe3O4 nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil. Rhizosphere, 17, 100275.
  • Doğaroğlu, Z. G., Eren, A., & Baran, M. F. (2019). Effects of ZnO nanoparticles and ethylenediamine-N,N′- disuccinic acid on seed germination of four different plants. Global Challenges, 1800111.
  • Dray Jr., F. A., Center, T. D., & Mattison, E. D. (2012). In situ estimates of waterhyacinth leaf tissue nitrogen using a SPAD-502 chlorophyll meter. Aquatic Botany, 100, 72-75.
  • Feng, Y., Yang, J., Liu, W., Yan, Y., & Wang, Y. (2021). Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a Cd-contaminated alkaline soil. Journal of Hazardous Materials, 404, 124005.
  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science and Technology, 47, 10645−10652.
  • Girelli, A. M., Astolfi, M. L., & Scuto, F. R. (2020). Agro-industrial wastes as potential carriers for enzyme immobilization: A review. Chemosphere, 244, 125368.
  • Hawkins, T. S., Gardiner, E. S., & Comer, G. S. (2009). Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17, 123-127.
  • Iannone, M. F., Groppa, M. D., de Sousa, M. E., van Raap, M. B. F., & Benavides, M. P. (2016). Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environmental and Experimental Botany, 131, 77–88.
  • Iannone, M. F., Groppa, M. D., Zawoznik, M. S., Coral, D. F., van Raap, M. B. F., & Benavides, M. P. (2021). Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth. Ecotoxicology and Environmental Safety, 211, 111942.
  • Ji, R., Shi, W., Wang, Y., Zhang, H., & Min, J. (2020). Nondestructive estimation of bok choy nitrogen status with an active canopy sensor in comparison to a chlorophyll meter. Pedosphere, 30(6), 769–777.
  • Kermanian, M., Naghibi, M., & Sadighian, S. (2020). One-pot hydrothermal synthesis of a magnetic hydroxyapatite nanocomposite for MR imaging and pH-Sensitive drug delivery applications. Heliyon, 6:e04928.
  • Lin, F. F., Qiu, L. F., Deng, J. S., Shi, Y. Y., Chen, L. S., & Wang, K. (2010). Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture, 71S, 60–65.
  • Mezacasa, A.V., Queiroz, A.M., Graciano, D.E., Pontes, M.S., Santiago, E.F., Oliveira, I.P., Lopez, A.J., Casagrande, G.A., Scherer, M.D., dos Reis, D.D., Oliveira, S.L., & Caires, A.R.L. (2020). Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. Journal of Photochemistry & Photobiology A: Chemistry, 389, 1-8.
  • Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mat. Sci. and Eng.: B.,177(5), 421-427.
  • Rop, K., Karuku, G. N., Mbui, D., Michira, I., & Njomo, N. (2018). Formulation of slow release NPK fertilizer (cellulose-graft-poly (acrylamide) / nano-hydroxyapatite /soluble fertilizer) composite and evaluating its N mineralization potential. Annals of Agricultural Sciences, 63, 163–172.
  • Shankramma, K., Yallappa, S., Shivanna, M. B., & Manjanna, J. (2016). Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Applied Nanoscience, 6, 983–990.
  • Su, C. (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. Journal of Hazardous Materials, 322, 48-84.
  • Wang, Y., Wang, S., Xu, M., Xiao, L., Dai, Z., & Li, J. (2019). The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environmental Pollution, 249,1011-1018.
  • Yang, Z., Gong, X., & Zhang, C. (2010). Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications. Chemical Engineering Journal,165, 117–121.
  • Zhi-Hui, M., Lei, D., Fu-Zhou, D., Xiao-Juan, L., & Dan-Yu, Q. (2020). Angle effects of vegetation indices and the influence on prediction of SPAD values in soybean and maize. International Journal of Applied Earth Observation Geoinformation, 93, 102198.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Zeynep Görkem Doğaroğlu 0000-0002-6566-5244

Yağmur Uysal 0000-0002-7217-8217

Project Number 2019-1-AP4-3494
Publication Date March 3, 2022
Submission Date November 23, 2021
Published in Issue Year 2022

Cite

APA Doğaroğlu, Z. G., & Uysal, Y. (2022). The Ecotoxicological Evaluations of Fe3O4, HAp, and Fe3O4-HAp Nanocomposite on Wheat: Impact on Chlorophyll Content. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 7-16. https://doi.org/10.17780/ksujes.1027395