Research Article
BibTex RIS Cite

ÇATI GEOMETRİSİNİN BİNA ISIL PERFORMANSI ÜZERİNDEKİ ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ

Year 2022, , 95 - 109, 03.06.2022
https://doi.org/10.17780/ksujes.1088841

Abstract

ÖZET
Bu çalışmanın amacı, çatı geometrilerinin hangisinin yaz aylarında daha enerji verimli olduğunu belirlemek için çatı geometrisinin iç hava sıcaklığı üzerindeki etkisini düz çatılarla karşılaştırarak araştırmaktır. Bu çatı tiplerinin doğal ısı transfer katsayıları ve toplam ısı transfer katsayıları adyabatik hazne tekniği kullanılarak deneysel olarak incelenmiştir. Deneysel analiz sonucu, konik çatı dış yüzeyi doğal taşınım ısı aktarım katsayısının ve toplam ısı aktarım katsayısının düz çatılara göre sırasıyla 1,5 ve 2,5 kat daha fazla olduğunu ortaya koymuştur. Bulunan sonuçlar, yaz aylarında Harran evinde iç hava sıcaklığının daha düşük olmasının nedenleri arasındadır

Supporting Institution

Bu çalışma HÜBAK tarafından desteklenmiştir.

Project Number

14024

References

  • Açıkgöz, Ö. (2015). A novel evaluation regarding the influence of surface emissivity on radiative and total heat transfer coefficients in radiant heating systems by means of theoretical and numerical methods. Energy and Buildings, 102, 105-116. https://doi.org/10.1016/j.enbuild.2015.05.016.
  • Başaran T. (2011). Thermal analysis of the domed vernacular houses of harran, Turkey. Indoor and Built Environment, 20 (5), 543-554.
  • Cruickshank, C. A., Harrison, S. J. (2010). Heat loss characteristics for a typical solar domestic hot water storage. Energy and Buildings, 42, 1703-1710. https://doi.org/10.1016/j.enbuild.2010.04.013.
  • Çengel Y. A. (2011). Isı ve Kütle Transferi Pratik bir yaklaşım, 3. Baskı, Güven Bilimsel.
  • Dalal, A., & Das, M. K. (2006). Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numerical Heat Transfer, Part A: Applications, 49:3, 301-322. https://doi.org/10.1080/10407780500343749.
  • Doğan, A., Akkus, S., Baskaya, Ş. (2012). Numerical analysis of natural convection heat transfer from annular fins on a horizontal cylinder. Isi Bilimi ve Teknigi Dergisi/ Journal of Thermal Science and Technology, 32. 31-41.
  • Evangelisti, L., Guattari, C., Gori, P., Bianchi, F. (2017). Heat transfer study of external convective and radiative coefficients for building applications. Energy and Buildings. 151. 429–438. https://doi.org/10.1016/j.enbuild.2017.07.004.
  • François, A., Ibos, L., Feuillet, V., & Meulemans, J. (2020). Novel in situ measurement methods of the total heat transfer coefficient on building walls. Energy and Buildings, 219, 110004.
  • Globe, S. & Dropkin, D. (1959). Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. ASME. J. Heat Transfer, 81(1): 24–28. https://doi.org/10.1115/1.4008124.
  • Hong, T., Ferrando, M., Luo, X., Causone, F. (2020). Modeling and analysis of heat emissions from buildings to ambient air. Applied Energy, 277,115566. https://doi.org/10.1016/j.apenergy.2020.115566.
  • Hu, Z., Cui, G., Zhang, Z. (2018). Numerical study of mixed convective heat transfer coefficients for building cluster. Journal of Wind Engineering and Industrial Aerodynamics, 172, 170-180. https://doi.org/10.1016/j.jweia.2017.10.025.
  • Iousef, S., Montazeri, H., Blocken, B. (2019). Impact of exterior convective heat transfer coefficient models on the energy demand prediction of buildings with different geometry. Build. Simul. 12, 797–816 https://doi.org/10.1007/s12273-019-0531-7.
  • Jiang, F., Yuan, Y., Li, Z., Zhao, Q., Zhao, K. (2020). Correlations for the forced convective heat transfer at a windward building façade with exterior louver blinds. Solar Energy, 209, 709-723. https://doi.org/10.1016/j.solener.2020.07.014.
  • Kline, S., McClintock, F. (1953). Describing uncertainties in single sample experiments, Mechanical Engineer ,75, 3-8.
  • McAdams, W. H. (1954). Heat Transmission, 3rd Ed. McGraw-Hill, New York, NY.
  • Montazeri, H., Blocken, B., Derome, D., Carmeliet, J. Hensen, J.L.M. (2015). CFD analysis of forced convective heat transfer coefficients at windward building facades: Influence of building geometry. Journal of Wind Engineering and Industrial Aerodynamics, 146, 102-116. https://doi.org/10.1016/j.jweia.2015.07.007.
  • Montazeri, H. & Blocken, B. (2017). New generalized expressions for forced convective heat transfer coefficients at building facades and roofs. Building and Environment, 119, 153-168. https://doi.org/10.1016/j.buildenv.2017.04.012.
  • Montazeri, H. & Blocken, B. (2018). Extension of generalized forced convective heat transfer coefficient expressions for isolated buildings taking into account oblique wind directions, Building and Environment, 140, 194-208. https://doi.org/10.1016/j.buildenv.2018.05.027.
  • Premrov, M., Žigart, M., Vesna, L. (2017). Influence of the building geometry on energy efficiency of timber-glass buildings for different climatic regions. Istrazivanja i projektovanja za privredu. 15, 529-539. https://doi.org/10.5937/jaes15-15256.
  • Saleh, H. & Hashim, I. (2014). Conjugate heat transfer in rayleigh-bénard convection in a square enclosure. The Scientific World Journal, 786102. 10.1155/2014/786102.
  • Sarris, Ι.Ε., Lekakis, I., Vlachos, N.S. (2004). Natural convection in rectangular tanks heated locally from below. International Journal of Heat and Mass Transfer, 47, 3549-3563. https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.022.
  • Turgut, P., Yeşilata, B. (2009). Investigation of Thermo-mechanical behaviors of scrap rubber added mortar plate and bricks. Journal of The Faculty of Engineering and Architecture of Gazi University, 24 (4): 651–658.
  • Yang, W., Zhu, X., Liu, J. (2017). Annual experimental research on convective heat transfer coefficient of exterior surface of building external Wall. Energy and Buildings, 155, 207-214. https://doi.org/10.1016/j.enbuild.2017.08.075.
  • Yesilata, B., Turgut, P. (2007). A simple dynamic measurement technique for comparing thermal insulation performances of anisotropic building materials. Energy and Buildings, 39(9):1027-1034.
  • Yıldırım E., Fıratoğlu A. Z., Yeşilata B. (2014). Comparison of the solar insolation on the roof of conic domed harran house and the flat roof. Isı Bilimi ve Tekniği Dergisi, 34(2), 123-128.
Year 2022, , 95 - 109, 03.06.2022
https://doi.org/10.17780/ksujes.1088841

Abstract

Project Number

14024

References

  • Açıkgöz, Ö. (2015). A novel evaluation regarding the influence of surface emissivity on radiative and total heat transfer coefficients in radiant heating systems by means of theoretical and numerical methods. Energy and Buildings, 102, 105-116. https://doi.org/10.1016/j.enbuild.2015.05.016.
  • Başaran T. (2011). Thermal analysis of the domed vernacular houses of harran, Turkey. Indoor and Built Environment, 20 (5), 543-554.
  • Cruickshank, C. A., Harrison, S. J. (2010). Heat loss characteristics for a typical solar domestic hot water storage. Energy and Buildings, 42, 1703-1710. https://doi.org/10.1016/j.enbuild.2010.04.013.
  • Çengel Y. A. (2011). Isı ve Kütle Transferi Pratik bir yaklaşım, 3. Baskı, Güven Bilimsel.
  • Dalal, A., & Das, M. K. (2006). Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numerical Heat Transfer, Part A: Applications, 49:3, 301-322. https://doi.org/10.1080/10407780500343749.
  • Doğan, A., Akkus, S., Baskaya, Ş. (2012). Numerical analysis of natural convection heat transfer from annular fins on a horizontal cylinder. Isi Bilimi ve Teknigi Dergisi/ Journal of Thermal Science and Technology, 32. 31-41.
  • Evangelisti, L., Guattari, C., Gori, P., Bianchi, F. (2017). Heat transfer study of external convective and radiative coefficients for building applications. Energy and Buildings. 151. 429–438. https://doi.org/10.1016/j.enbuild.2017.07.004.
  • François, A., Ibos, L., Feuillet, V., & Meulemans, J. (2020). Novel in situ measurement methods of the total heat transfer coefficient on building walls. Energy and Buildings, 219, 110004.
  • Globe, S. & Dropkin, D. (1959). Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. ASME. J. Heat Transfer, 81(1): 24–28. https://doi.org/10.1115/1.4008124.
  • Hong, T., Ferrando, M., Luo, X., Causone, F. (2020). Modeling and analysis of heat emissions from buildings to ambient air. Applied Energy, 277,115566. https://doi.org/10.1016/j.apenergy.2020.115566.
  • Hu, Z., Cui, G., Zhang, Z. (2018). Numerical study of mixed convective heat transfer coefficients for building cluster. Journal of Wind Engineering and Industrial Aerodynamics, 172, 170-180. https://doi.org/10.1016/j.jweia.2017.10.025.
  • Iousef, S., Montazeri, H., Blocken, B. (2019). Impact of exterior convective heat transfer coefficient models on the energy demand prediction of buildings with different geometry. Build. Simul. 12, 797–816 https://doi.org/10.1007/s12273-019-0531-7.
  • Jiang, F., Yuan, Y., Li, Z., Zhao, Q., Zhao, K. (2020). Correlations for the forced convective heat transfer at a windward building façade with exterior louver blinds. Solar Energy, 209, 709-723. https://doi.org/10.1016/j.solener.2020.07.014.
  • Kline, S., McClintock, F. (1953). Describing uncertainties in single sample experiments, Mechanical Engineer ,75, 3-8.
  • McAdams, W. H. (1954). Heat Transmission, 3rd Ed. McGraw-Hill, New York, NY.
  • Montazeri, H., Blocken, B., Derome, D., Carmeliet, J. Hensen, J.L.M. (2015). CFD analysis of forced convective heat transfer coefficients at windward building facades: Influence of building geometry. Journal of Wind Engineering and Industrial Aerodynamics, 146, 102-116. https://doi.org/10.1016/j.jweia.2015.07.007.
  • Montazeri, H. & Blocken, B. (2017). New generalized expressions for forced convective heat transfer coefficients at building facades and roofs. Building and Environment, 119, 153-168. https://doi.org/10.1016/j.buildenv.2017.04.012.
  • Montazeri, H. & Blocken, B. (2018). Extension of generalized forced convective heat transfer coefficient expressions for isolated buildings taking into account oblique wind directions, Building and Environment, 140, 194-208. https://doi.org/10.1016/j.buildenv.2018.05.027.
  • Premrov, M., Žigart, M., Vesna, L. (2017). Influence of the building geometry on energy efficiency of timber-glass buildings for different climatic regions. Istrazivanja i projektovanja za privredu. 15, 529-539. https://doi.org/10.5937/jaes15-15256.
  • Saleh, H. & Hashim, I. (2014). Conjugate heat transfer in rayleigh-bénard convection in a square enclosure. The Scientific World Journal, 786102. 10.1155/2014/786102.
  • Sarris, Ι.Ε., Lekakis, I., Vlachos, N.S. (2004). Natural convection in rectangular tanks heated locally from below. International Journal of Heat and Mass Transfer, 47, 3549-3563. https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.022.
  • Turgut, P., Yeşilata, B. (2009). Investigation of Thermo-mechanical behaviors of scrap rubber added mortar plate and bricks. Journal of The Faculty of Engineering and Architecture of Gazi University, 24 (4): 651–658.
  • Yang, W., Zhu, X., Liu, J. (2017). Annual experimental research on convective heat transfer coefficient of exterior surface of building external Wall. Energy and Buildings, 155, 207-214. https://doi.org/10.1016/j.enbuild.2017.08.075.
  • Yesilata, B., Turgut, P. (2007). A simple dynamic measurement technique for comparing thermal insulation performances of anisotropic building materials. Energy and Buildings, 39(9):1027-1034.
  • Yıldırım E., Fıratoğlu A. Z., Yeşilata B. (2014). Comparison of the solar insolation on the roof of conic domed harran house and the flat roof. Isı Bilimi ve Tekniği Dergisi, 34(2), 123-128.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Erdal Yıldırım 0000-0002-9309-2420

Project Number 14024
Publication Date June 3, 2022
Submission Date March 16, 2022
Published in Issue Year 2022

Cite

APA Yıldırım, E. (2022). ÇATI GEOMETRİSİNİN BİNA ISIL PERFORMANSI ÜZERİNDEKİ ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(2), 95-109. https://doi.org/10.17780/ksujes.1088841