Bu çalışmada dielektrik taban destekli eş düzlemli dalga kılavuzlarının (DTDEDDK) efektif dielektrik sabitini ve karakteristik empedansını belirlemek amacıyla genetik programlama (GP) ile geliştirilmiş doğru ve çok basit quasi-statik analiz modelleri sunulmuştur. GP kullanılarak elde edilen quasi-statik analiz modellerinin geçerliliğini ve doğruluğunu göstermek için, bu çalışmada sunulan modelden elde edilen sonuçlar literatürde var olan quasi-statik analiz sonuçları ile karşılaştırılmıştır. Bu karşılaştırma sonuçları önerilen quasi-statik analiz modellerinin sonuçları ile literatürdeki mevcut quasi-statik analiz sonuçları arasında iyi bir uyum olduğunu göstermiştir. Bu çalışmadaki tasarım parametrelerinin değer aralıkları 2 ≤ εr1 ≤ 10, 10 ≤ εr2 ≤ 20, 20 µm ≤ h ≤ 2000 µm, 0.1 ≤ w/h ≤ 1, 0.1 ≤ s/h ≤ 4 ve DTDEDDK’larının bu parametre değerlerine karşılık gelen karakteristik empedans değerleri 19 Ω ≤ Z0 ≤ 117 Ω aralığındadır. Bu çalışmada önerilen DTDEDDK’lar için önerilen quasi-statik analiz modellerinin doğruluklarının pratik uygulamalar için yeterince iyi olduğu gözlemlenmiştir.
Gupta, K. C., & Singh, A. (1974). Microwave Integrated Circuits. Wiley Eastern Ltd. New Delhi.
Frey, J. (1974). Microwave Integrated Circuits. Artech House, Dedham.
Simons, R. (2001). Coplanar waveguide circuits, components, and systems. John Wiley and Sons, Cleveland, Ohio, 439s.
Special issue on, microwave integrated circuits. (1968). IEEE Transactions on Microwave Theory and Techniques, MTT-19.
Special issue on, microwave integrated circuits. (1971). IEEE Transactions on Microwave Theory and Techniques, MTT-19.
Wen, C. P. (1969). Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Transactions on Microwave Theory and Techniques, 17(12), 1087–1090. https://doi.org/10.1109/TMTT.1969.1127105
Das, N. K., & Pozar, D. M. (1987). A generalized spectral-domain green’s function for multilayer dielectric substrates with application to multilayer transmission lines. IEEE Transactions on Microwave Theory and Techniques, 35(3), 326–335. https://doi.org/10.1109/TMTT.1987.1133646
Frankel, M. Y., Voelker, R. H., & Hilfiker, J. N. (1994). Coplanar transmission lines on thin substrates for high-speed low-loss propagation. IEEE Transactions on Microwave Theory and Techniques, 42(3), 396–402. https://doi.org/10.1109/22.277432
Gevorgian, S., Linner, L. J. P., & Kollberg, E. L. (1995). CAD models for shielded multilayered CPW. IEEE Transactions on Microwave Theory and Techniques, 43(4), 772–779. https://doi.org/10.1109/22.375223
Erli, C., & Chou, S. Y. (1997). Characteristics of coplanar transmission lines on multilayer substrates: modeling and experiments. IEEE Transactions on Microwave Theory and Techniques, 45(6), 939–945. https://doi.org/10.1109/22.588606
Shih, Y. C., & Itoh, T. (1982). Analysis of printed transmission lines for monolithic integrated circuits. ElL, 18(14), 585. https://doi.org/10.1049/EL:19820401
Cai, M., Kooi, P. S., Leong, M. S., & Yeo, T. S. (1993). Symmetrical coplanar waveguide with finite ground plane. Microwave and Optical Technology Letters, 6(3), 218–220. https://doi.org/10.1002/MOP.4650060320
Jackson, R. W. (1986). Considerations in the use of coplanar waveguide for millimeter-wave integrated circuits. IEEE Transactions on Microwave Theory and Techniques, 34(12), 1450–1456. https://doi.org/10.1109/TMTT.1986.1133562
Riaziat, M., Bandy, S., & Zdasiuk, G. (1987). Coplanar waveguides for MMICs. Microwave Journal, 30, 125.
Morkoc, H., & Aksun, M. I. (1988). GaAs on Si as a Substrate for Microwave and Millimeter-Wave Monolithic Integration. IEEE Transactions on Microwave Theory and Techniques, 36(1), 160–162. https://doi.org/10.1109/22.3500
Bedair, S. S., & Wolff, I. (1992). Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for (M)MIC’s. IEEE Transactions on Microwave Theory and Techniques, 40(1), 41–48. https://doi.org/10.1109/22.108321
Cheng, K. K. M., & Robertson, I. D. (1994). Numerically efficient spectral domain approach to the quasi-TEM analysis of supported coplanar waveguide structures. IEEE Transactions on Microwave Theory and Techniques, 42(10), 1958–1965. https://doi.org/10.1109/22.320780
Görür, A., Karpuz, C., & Alkan, M. (1996). Quasi-static TEM characteristics of overlayed supported asymmetric coplanar waveguides. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 6(5), 297–304. https://doi.org/10.1002/(SICI)1522-6301(199609)6:5<297::AID-MMCE1>3.0.CO;2-H
Yildiz, C, Guney, K., Turkmen, M., & Kaya, S. (2007). Neural models for quasi-static analysis of conventional and supported coplanar waveguides. AEU - International Journal of Electronics and Communications, 61(8), 521–527. https://doi.org/10.1016/J.AEUE.2006.09.003
Yildiz, C, & Kisioglu, H. (2017). Very simple and accurate computer-aided-design (CAD) models developed by genetic programming for the quasi-static analysis of unshielded suspended and inverted microstrip lines. Journal of Electrical & Electronics Engineering, Istanbul University, 17(2), 3303–3309.
Kisioglu, H., & Yildiz, C. (2016). New synthesis models for the coplanar waveguide with a finite width ground plane. 2016 National Conference on Electrical, Electronics and Biomedical Engineering (ELECO), 558–561.
QUASI-STATIC ANALYSIS MODELS FOR DIELECTRIC BASE SUPPORTED COPLANAR WAVEGUIDES IMPROVED BY GENETIC PROGRAMMING
In this study, accurate and very simple quasi-static analysis models developed with genetic programming (GP) are presented in order to determine the effective dielectric constant and characteristic impedance of dielectric base supported coplanar waveguides. In order to demonstrate the validity and accuracy of the quasi-static analysis models improved by using GP, the results of proposed models in this work were compared with the quasi-static analysis results available in the literature. These comparison results show that there is a good agreement between the results of the proposed quasi-static analysis models and the quasi-static analysis results available in the literature. The design parameter ranges in this study are 2 ≤ εr1 ≤ 10, 10 ≤ εr2 ≤ 20, 20 µm ≤ h ≤ 2000 µm, 0.1 ≤ w/h ≤ 1, 0.1 ≤ s/h ≤ 4 and the characteristic impedance values of dielectric base supported coplanar waveguides corresponding these design parameter values are between 19 Ω ≤ Z0 ≤ 117 Ω. It has been observed that the accuracy of the proposed quasi-static analysis models for dielectric base supported coplanar waveguides proposed in this study is good enough for the practical applications.
Gupta, K. C., & Singh, A. (1974). Microwave Integrated Circuits. Wiley Eastern Ltd. New Delhi.
Frey, J. (1974). Microwave Integrated Circuits. Artech House, Dedham.
Simons, R. (2001). Coplanar waveguide circuits, components, and systems. John Wiley and Sons, Cleveland, Ohio, 439s.
Special issue on, microwave integrated circuits. (1968). IEEE Transactions on Microwave Theory and Techniques, MTT-19.
Special issue on, microwave integrated circuits. (1971). IEEE Transactions on Microwave Theory and Techniques, MTT-19.
Wen, C. P. (1969). Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Transactions on Microwave Theory and Techniques, 17(12), 1087–1090. https://doi.org/10.1109/TMTT.1969.1127105
Das, N. K., & Pozar, D. M. (1987). A generalized spectral-domain green’s function for multilayer dielectric substrates with application to multilayer transmission lines. IEEE Transactions on Microwave Theory and Techniques, 35(3), 326–335. https://doi.org/10.1109/TMTT.1987.1133646
Frankel, M. Y., Voelker, R. H., & Hilfiker, J. N. (1994). Coplanar transmission lines on thin substrates for high-speed low-loss propagation. IEEE Transactions on Microwave Theory and Techniques, 42(3), 396–402. https://doi.org/10.1109/22.277432
Gevorgian, S., Linner, L. J. P., & Kollberg, E. L. (1995). CAD models for shielded multilayered CPW. IEEE Transactions on Microwave Theory and Techniques, 43(4), 772–779. https://doi.org/10.1109/22.375223
Erli, C., & Chou, S. Y. (1997). Characteristics of coplanar transmission lines on multilayer substrates: modeling and experiments. IEEE Transactions on Microwave Theory and Techniques, 45(6), 939–945. https://doi.org/10.1109/22.588606
Shih, Y. C., & Itoh, T. (1982). Analysis of printed transmission lines for monolithic integrated circuits. ElL, 18(14), 585. https://doi.org/10.1049/EL:19820401
Cai, M., Kooi, P. S., Leong, M. S., & Yeo, T. S. (1993). Symmetrical coplanar waveguide with finite ground plane. Microwave and Optical Technology Letters, 6(3), 218–220. https://doi.org/10.1002/MOP.4650060320
Jackson, R. W. (1986). Considerations in the use of coplanar waveguide for millimeter-wave integrated circuits. IEEE Transactions on Microwave Theory and Techniques, 34(12), 1450–1456. https://doi.org/10.1109/TMTT.1986.1133562
Riaziat, M., Bandy, S., & Zdasiuk, G. (1987). Coplanar waveguides for MMICs. Microwave Journal, 30, 125.
Morkoc, H., & Aksun, M. I. (1988). GaAs on Si as a Substrate for Microwave and Millimeter-Wave Monolithic Integration. IEEE Transactions on Microwave Theory and Techniques, 36(1), 160–162. https://doi.org/10.1109/22.3500
Bedair, S. S., & Wolff, I. (1992). Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for (M)MIC’s. IEEE Transactions on Microwave Theory and Techniques, 40(1), 41–48. https://doi.org/10.1109/22.108321
Cheng, K. K. M., & Robertson, I. D. (1994). Numerically efficient spectral domain approach to the quasi-TEM analysis of supported coplanar waveguide structures. IEEE Transactions on Microwave Theory and Techniques, 42(10), 1958–1965. https://doi.org/10.1109/22.320780
Görür, A., Karpuz, C., & Alkan, M. (1996). Quasi-static TEM characteristics of overlayed supported asymmetric coplanar waveguides. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 6(5), 297–304. https://doi.org/10.1002/(SICI)1522-6301(199609)6:5<297::AID-MMCE1>3.0.CO;2-H
Yildiz, C, Guney, K., Turkmen, M., & Kaya, S. (2007). Neural models for quasi-static analysis of conventional and supported coplanar waveguides. AEU - International Journal of Electronics and Communications, 61(8), 521–527. https://doi.org/10.1016/J.AEUE.2006.09.003
Yildiz, C, & Kisioglu, H. (2017). Very simple and accurate computer-aided-design (CAD) models developed by genetic programming for the quasi-static analysis of unshielded suspended and inverted microstrip lines. Journal of Electrical & Electronics Engineering, Istanbul University, 17(2), 3303–3309.
Kisioglu, H., & Yildiz, C. (2016). New synthesis models for the coplanar waveguide with a finite width ground plane. 2016 National Conference on Electrical, Electronics and Biomedical Engineering (ELECO), 558–561.
Kişioğlu, H., & Yıldız, C. (2022). Dielektrik Taban Destekli Eş Düzlemli Dalga Kılavuzları için Genetik Programlama ile Geliştirilmiş Quasi-Statik Analiz Modelleri. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(2), 138-144. https://doi.org/10.17780/ksujes.1104514