CEVİZ KABUĞUNUN DOĞAL BİYOSORBENT OLARAK ÇİNKO GİDERİMİNDE KULLANILMASININ ARAŞTIRILMASI
Year 2022,
, 556 - 564, 03.12.2022
Sevda Esma Darama
,
Başak Mesci Oktay
,
Semra Çoruh
Abstract
Ağır metal kirliliği dünya çapında endişe kaynağıdır ve endüstriyel atık sulardan büyük miktarda ağır metal alıcı ortamlara deşarj edilmektedir. Son yıllarda, tarımsal yan ürünlerin etkin kullanımı, atık yönetiminde kesinlikle büyük bir zorluktur. Tarımsal kalıntıların ticari adsorbentlere göre daha kolay elde edilmesi ve daha ucuz olması onları cazip kılmaktadır. Bu çalışmada, biyosorbent olarak doğal ve biyokömür haline getirilmiş ceviz kabukları kullanılarak endüstriyel atık sudan çinkonun giderimi araştırılmıştır. Ceviz kabukları farklı oranlarda kullanılarak farklı konsantrasyonlardaki sulu çözeltilerdeki çinko giderilmeye çalışılmıştır. Başlangıç konsantrasyonunun etkileri, temas süresi, adsorbent dozu araştırılmıştır. Ayrıca adsorpsiyon izotermleri ve kinetiği de incelenmiştir. Ceviz kabuğunun modifiye edilmiş şekli ile %98'e varan çinko giderimi elde edilmiştir. Ayrıca the pseudo-second kinetiği ve Freundlich izotermiyle uyumlu olduğu gözlemlenmiştir. Sonuçlar, çinko gideriminde modifiye edilen ceviz kabuğunun potansiyel bir adsorban olduğunu göstermiştir. Ceviz kabukları üzerine çinko adsorpsiyonunun Freundlich izotermine uyduğu bulunmuştur. Atık su ile yapılan testlerde elde edilen sonuçlar, çinkonun giderilmesi için ceviz kabuklarının potansiyel kullanımının uygun olduğunu göstermiştir.
References
- Agarwal, R.M., Singh, K., Upadhyaya, H., & Dohare, R.K. (2017). Removal of heavy metals from wastewater using modified agricultural adsorbents. Materials Today: Proceedings,4, 10534–10538. https://doi.org/10.1016/j.matpr.2017.06.415
- Babel, S., & Kurniawan, T.A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials B97, 219-243. https://doi.org/10.1016/S0304-3894 (02)00263-7
- Barr, M.R., Forster, L., D’Agostino, C., & Volpe, R. (2022). Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars. Applied Surface Science, 571, 1-10. https://doi.org/10.1016/j.apsusc.2021.151253
- Bhattacharya, A.K., Mandal, S.N., & Das, S.K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123, 43–51. https://doi.org/10.1016/j.cej.2006.06.012
- Bhatti, H.N., Mumtaz, B., Hanif, M.A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam (horseradish tree) biomass. Process Biochemistry, 42, 547–553. https://doi.org/10.1016/j.procbio.2006.10.009
- Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: a review. J. Hazard. Mater. 157, 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024
- Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., &Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Research,47:2563–2571. https://doi.org/10.1016/j.watres.2013.02.014
- Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
- Hawari, A., Rawajfih, Z., & Nsour, N. (2009). Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues. Journal of Hazardous Materials, 168, 1284–1289. https://doi.org/10.1016/j.jhazmat.2009.03.014
- Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dye sand metal ions from aqueous solutions. Bioresource Technology.,87 pp.129–132. https://doi.org/10.1016/S0960-8524(02)00201-8
- Kazemipour, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M., Kermani, H.R. (2008) Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. Journal of Hazardous Materials, 150 322–327. https://doi.org/10.1016/j.jhazmat.2007.04.118
- Liu, W., Jiang, H., & Yu, H. (2015). Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews. 115, 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
- Malik, R., Ramteke, D.S., & Wate, S.R. (2007). Adsorption of malachite green on ground nut shell waste based powdered activated carbon. Waste Management, 27 pp. 1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009
- Mohan, D. & Pittman, C.U. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardaus Materials, 137, 762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060
- Mohan, D. & Singh, K.P. (2002). Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse – an agricultural waste. Water Research, 36 2304-2318. https://doi.org/10.1016/S0043-1354(01)00447-X
- Moreno-Barbosa, J.J., Lo´pez-Velandia,C., Maldonado A.P., Liliana Giraldo L., & Moreno-Piraja´n, J.C.(2013). Removal of lead(II) and zinc(II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell. Adsorption, 19:675–685. https://doi.org/ 10.1007/s10450-013-9491-x
- Srivastava, S.K., Gupta, V.K., & Mohan, D. (1997). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management, 17 517-522. https://doi.org/10.1016/S0956-053X(97)10062-9
Qiang L., Yajun, L., Jia Z., Ying C., Xiuxiu R., Jianyong L., & Guangren, Q.(2011). Effective removal of zinc from aqueous solution by hydrocalumite, Chemical Engineering Journal, 175 (2011) 33–38. https://doi.org/10.1016/j.cej.2011.09.022
- Quki, S.K., Cheeseman, C.R. & Perry, R. (1993). Effects on conditioning treatment chabazite and clinoptilolite prior to lead, zinc and cadmium, Environ. Sci. Technol., 27,1108-1116. https://doi.org/10.1021/es00043a009
- Wang, X., Wu, J., & Chen, Y. (2018). Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. Bioresource Technology, 258, 88–97. https://doi.org/10.1016/j.biortech.2018.02.114
INVESTIGATION OF THE USE OF WALNUT SHELLS AS A NATURAL BIOSORBENT FOR ZINC REMOVAL
Year 2022,
, 556 - 564, 03.12.2022
Sevda Esma Darama
,
Başak Mesci Oktay
,
Semra Çoruh
Abstract
Heavy metal contamination is a primary concern worldwide and it is discharged from the industrial wastewater to a large amount of heavy metal receiving environments. In recent years, the effective use of agricultural by-products is definitely a major challenge in waste management. The fact that agricultural residues are more easily obtained and cheaper than commercial adsorbents makes it attractive. In this study, removal of zinc from industrial wastewater using natural and thermally modified (biochar) walnut shells as biosorbent was investigated. It was tried to remove zinc in aqueous solutions with different concentrations by using walnut shells at different rates. The effects of initial concentration, contact time, adsorbent dosage. In addition, adsorption isotherms and kinetics were also studied. With the modified form of the walnut shell, up to 98% zinc removal efficiency was obtained. Also, adsorption was observed to be consistent with pseudo-second kinetics and Freundlich isotherm. The results showed that the modified walnut shell in zinc removal was a potential adsorbent. The adsorption of zinc, onto walnut shells was found to fit Freundlich isotherm. The results obtained in the tests with wastewater showed the potential use of walnut shells for the removal of zinc.
References
- Agarwal, R.M., Singh, K., Upadhyaya, H., & Dohare, R.K. (2017). Removal of heavy metals from wastewater using modified agricultural adsorbents. Materials Today: Proceedings,4, 10534–10538. https://doi.org/10.1016/j.matpr.2017.06.415
- Babel, S., & Kurniawan, T.A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials B97, 219-243. https://doi.org/10.1016/S0304-3894 (02)00263-7
- Barr, M.R., Forster, L., D’Agostino, C., & Volpe, R. (2022). Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars. Applied Surface Science, 571, 1-10. https://doi.org/10.1016/j.apsusc.2021.151253
- Bhattacharya, A.K., Mandal, S.N., & Das, S.K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123, 43–51. https://doi.org/10.1016/j.cej.2006.06.012
- Bhatti, H.N., Mumtaz, B., Hanif, M.A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam (horseradish tree) biomass. Process Biochemistry, 42, 547–553. https://doi.org/10.1016/j.procbio.2006.10.009
- Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: a review. J. Hazard. Mater. 157, 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024
- Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., &Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Research,47:2563–2571. https://doi.org/10.1016/j.watres.2013.02.014
- Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
- Hawari, A., Rawajfih, Z., & Nsour, N. (2009). Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues. Journal of Hazardous Materials, 168, 1284–1289. https://doi.org/10.1016/j.jhazmat.2009.03.014
- Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dye sand metal ions from aqueous solutions. Bioresource Technology.,87 pp.129–132. https://doi.org/10.1016/S0960-8524(02)00201-8
- Kazemipour, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M., Kermani, H.R. (2008) Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. Journal of Hazardous Materials, 150 322–327. https://doi.org/10.1016/j.jhazmat.2007.04.118
- Liu, W., Jiang, H., & Yu, H. (2015). Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews. 115, 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
- Malik, R., Ramteke, D.S., & Wate, S.R. (2007). Adsorption of malachite green on ground nut shell waste based powdered activated carbon. Waste Management, 27 pp. 1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009
- Mohan, D. & Pittman, C.U. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardaus Materials, 137, 762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060
- Mohan, D. & Singh, K.P. (2002). Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse – an agricultural waste. Water Research, 36 2304-2318. https://doi.org/10.1016/S0043-1354(01)00447-X
- Moreno-Barbosa, J.J., Lo´pez-Velandia,C., Maldonado A.P., Liliana Giraldo L., & Moreno-Piraja´n, J.C.(2013). Removal of lead(II) and zinc(II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell. Adsorption, 19:675–685. https://doi.org/ 10.1007/s10450-013-9491-x
- Srivastava, S.K., Gupta, V.K., & Mohan, D. (1997). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management, 17 517-522. https://doi.org/10.1016/S0956-053X(97)10062-9
Qiang L., Yajun, L., Jia Z., Ying C., Xiuxiu R., Jianyong L., & Guangren, Q.(2011). Effective removal of zinc from aqueous solution by hydrocalumite, Chemical Engineering Journal, 175 (2011) 33–38. https://doi.org/10.1016/j.cej.2011.09.022
- Quki, S.K., Cheeseman, C.R. & Perry, R. (1993). Effects on conditioning treatment chabazite and clinoptilolite prior to lead, zinc and cadmium, Environ. Sci. Technol., 27,1108-1116. https://doi.org/10.1021/es00043a009
- Wang, X., Wu, J., & Chen, Y. (2018). Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. Bioresource Technology, 258, 88–97. https://doi.org/10.1016/j.biortech.2018.02.114