KALDNES K1 ÜZERİNDE BİYOFİLM OLUŞUMUNUN İNCELENMESİ
Year 2022,
, 565 - 569, 03.12.2022
Melike Kozak
,
Serdar Göçer
,
Ahmet Duyar
,
İrem Ayranpınar
,
Emre Oğuz Köroğlu
,
Kevser Cırık
Abstract
Hareketli yataklı biyofilm reaktörünün (HYBR), belediye ve endüstriyel atık suların arıtılması için etkili bir sistem olduğu kanıtlanmıştır. Hareketli yataklı biyofilm reaktörlerinin (HYBR) ana çalışma mekanizması, aerobik biyoreaktörlerde difüzörler veya anoksik/anaerobik biyoreaktörlerde mekanik karıştırıcılar tarafından sağlanan karıştırma ile biyoreaktördeki biyofilm taşıyıcılarında bağlı biyokütlenin büyümesidir. Biyofilm oluşumu, mikrobiyal bileşim ve özelliklerden etkilenen karmaşık bir süreçtir.
Bu çalışmada, tekstil atıksu kullanılarak iki hareketli yataklı biyofilm reaktöründe (AnHYBR1 ve AnHYBR2) Kaldnes K1 üzerinde biyofilm oluşturma performansı araştırılmıştır. %40 doluluk oranına sahip her iki MBBR de 6 saatlik hidrolik tutma süresi (HRT) ile çalıştırılmıştır. AnHYBR1 anaerobik koşullar altında çalıştırılırken, AnHYBR2 farklı havalandırma oranlarında (0,001-0,004 m3hava/m3rektör) çalıştırılmıştır. En yüksek biyokütle konsantrasyonu, 4062 mg/L'ye karşılık gelen 0,004 m3hava/m3reaktör havalandırma oranıyla AnHYBR2'de gözlenmiştir. Sonuçlar, sınırlı havalandırmanın anaerobik koşullardan ziyade biyofilm taşıyıcıları üzerinde biyofilm oluşumunu iyileştirdiğini göstermiştir.
References
- Annachhatre A.P., Bhamidimarri S.M.R. (1992). Microbial attachment and growth in fixed film reactors: process startup considerations. Biotechnol. Adv., 10, 69–91.
- Ansari, M. I., Schiwon, K., Malik, A., & Grohmann, E. (2012). Biofilm formation by environmental bacteria. In Environmental protection strategies for sustainable development, 341-377.
- Apha, A. W. W. A. (1998). Standard methods for the examination of water and wastewater, 20. Washington, DC: American Public Health Association.
- Bassin, J. P., & Dezotti, M. (2018). Moving bed biofilm reactor (MBBR). In Advanced Biological Processes for Wastewater Treatment, 37-74.
- Boltz, J. P., Daigger, G. T., Austin, D., & Johnson, B. (2019). U.S. Patent Application, No. 16/165,617.
- Chen, S., Sun, D., Chung, J.S. (2008). Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system, Waste Manage., 28 (2), 339–34.
- Chen, X., Kong, L., Wang, X., Tian, S., & Xiong, Y. (2015). Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface. Bioprocess and biosystems engineering, 38(2), 273-285.
- Chu, L., Wang, J., Quan, F., Xing, X. H., Tang, L., & Zhang, C. (2014). Modification of polyurethane foam carriers and application in a moving bed biofilm reactor. Process Biochemistry, 49(11), 1979-1982.
- Copithorn, R. R. (2010). Introduction to biofilm reactors. In Biofilm Reactors. WEF Manual of Practice No. Alexandria, Virginia, USA: WEF Press/McGraw Hill, 35, 1–14.
- Copithorn, R. R. (2010). Introduction to biofilm reactors. In Biofilm Reactors. WEF Manual of Practice No. 35, 1–14. Alexandria, Virginia, USA: WEF Press/McGraw Hill.
- Flemming, H., Wingender, J., Szewzyk, U., Steinberg, P., and Rice, S. A. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol., 14, 563–575.
- Kozak, M., Cirik, K., Başak, S. (2021). Treatment of textile wastewater using combined anaerobic moving bed biofilm reactor and powdered activated carbon-aerobic membrane reactor. Journal of Environmental Chemical Engineering, 9(4), 105596.
- Li, C., Felz, S., Wagner, M., Lackner, S., and Horn, H. (2016). Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography. Bioresour. Technol., 200, 128–136.
- Mahendran, B., Lishman, L., and Liss, S. N. (2012). Structural, physicochemical and microbial properties of flocs and biofilms in integrated fixed-film activated sludge (IFFAS) systems. Water Res., 46, 5085–5101.
- Morgan-Sagastume, F. (2018). Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. Critical reviews in environmental science and technology, 48(5), 439-470.
- Morper, M. R. (1994). Upgrading of activated sludge systems for nitrogen removal by application of the Linpor CN process. Water Science & Technology.
- Ødegaard, H. (2006). Innovations in wastewater treatment: The moving bed biofilm process. Water Sci. Technol., 53, 17–33.
- Ødegaard, H., Rusten, B., Siljudalen, J. (1999). The development of the moving bed biofilm process—from idea to commercial product. Eur. Water Manage, 2 (3), 36–43.
- Ødegaard, H., Rusten, B., Westrum, T. (1994). A new moving bed biofilm reactor—applications and results. Water Sci. Technol., 29(10–11), 157–165.
INVESTIGATION OF BIOFILM FORMATION ON KALDNES K1
Year 2022,
, 565 - 569, 03.12.2022
Melike Kozak
,
Serdar Göçer
,
Ahmet Duyar
,
İrem Ayranpınar
,
Emre Oğuz Köroğlu
,
Kevser Cırık
Abstract
The moving bed biofilm reactor (MBBR) has proven to be an effective system for the treatment of municipal and industrial wastewater. The main operating mechanism of moving bed biofilm reactors (MBBR) is the growth of attached biomass in biofilm carriers in the bioreactor with mixing provided by diffusers in aerobic bioreactors or mechanical stirrers in anoxic/anaerobic bioreactors. Biofilm formation is a complex process affected by microbial composition and properties.
In this study, biofilm formation performance on Kaldnes K1 was investigated in two moving bed biofilm reactors (AnMBBR1 and AnMBBR2) using textile wastewater. Both MBBRs with a 40% fill rate were operated with a 6-hour hydraulic retention time (HRT). AnMBBR1 was operated under anaerobic conditions while AnMBBR2 was operated at different aeration rates (0.001-0.004 m3 air/m3reactor). The highest biomass concentration was observed in AnMBBR2 with a reactor aeration ratio of 0.004 m3air/m3reactor, corresponding to 4062 mg/L. The results showed that limited aeration improved biofilm formation on biofilm carriers rather than anaerobic conditions.
References
- Annachhatre A.P., Bhamidimarri S.M.R. (1992). Microbial attachment and growth in fixed film reactors: process startup considerations. Biotechnol. Adv., 10, 69–91.
- Ansari, M. I., Schiwon, K., Malik, A., & Grohmann, E. (2012). Biofilm formation by environmental bacteria. In Environmental protection strategies for sustainable development, 341-377.
- Apha, A. W. W. A. (1998). Standard methods for the examination of water and wastewater, 20. Washington, DC: American Public Health Association.
- Bassin, J. P., & Dezotti, M. (2018). Moving bed biofilm reactor (MBBR). In Advanced Biological Processes for Wastewater Treatment, 37-74.
- Boltz, J. P., Daigger, G. T., Austin, D., & Johnson, B. (2019). U.S. Patent Application, No. 16/165,617.
- Chen, S., Sun, D., Chung, J.S. (2008). Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system, Waste Manage., 28 (2), 339–34.
- Chen, X., Kong, L., Wang, X., Tian, S., & Xiong, Y. (2015). Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface. Bioprocess and biosystems engineering, 38(2), 273-285.
- Chu, L., Wang, J., Quan, F., Xing, X. H., Tang, L., & Zhang, C. (2014). Modification of polyurethane foam carriers and application in a moving bed biofilm reactor. Process Biochemistry, 49(11), 1979-1982.
- Copithorn, R. R. (2010). Introduction to biofilm reactors. In Biofilm Reactors. WEF Manual of Practice No. Alexandria, Virginia, USA: WEF Press/McGraw Hill, 35, 1–14.
- Copithorn, R. R. (2010). Introduction to biofilm reactors. In Biofilm Reactors. WEF Manual of Practice No. 35, 1–14. Alexandria, Virginia, USA: WEF Press/McGraw Hill.
- Flemming, H., Wingender, J., Szewzyk, U., Steinberg, P., and Rice, S. A. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol., 14, 563–575.
- Kozak, M., Cirik, K., Başak, S. (2021). Treatment of textile wastewater using combined anaerobic moving bed biofilm reactor and powdered activated carbon-aerobic membrane reactor. Journal of Environmental Chemical Engineering, 9(4), 105596.
- Li, C., Felz, S., Wagner, M., Lackner, S., and Horn, H. (2016). Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography. Bioresour. Technol., 200, 128–136.
- Mahendran, B., Lishman, L., and Liss, S. N. (2012). Structural, physicochemical and microbial properties of flocs and biofilms in integrated fixed-film activated sludge (IFFAS) systems. Water Res., 46, 5085–5101.
- Morgan-Sagastume, F. (2018). Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. Critical reviews in environmental science and technology, 48(5), 439-470.
- Morper, M. R. (1994). Upgrading of activated sludge systems for nitrogen removal by application of the Linpor CN process. Water Science & Technology.
- Ødegaard, H. (2006). Innovations in wastewater treatment: The moving bed biofilm process. Water Sci. Technol., 53, 17–33.
- Ødegaard, H., Rusten, B., Siljudalen, J. (1999). The development of the moving bed biofilm process—from idea to commercial product. Eur. Water Manage, 2 (3), 36–43.
- Ødegaard, H., Rusten, B., Westrum, T. (1994). A new moving bed biofilm reactor—applications and results. Water Sci. Technol., 29(10–11), 157–165.