Research Article
BibTex RIS Cite

İŞLEVSEL DERECELENDİRİLMİŞ DAİRESEL BİR KANATÇIĞIN TERMOELASTİK DAVRANIŞININ SAYISAL İNCELENMESİ

Year 2022, , 602 - 614, 03.12.2022
https://doi.org/10.17780/ksujes.1142771

Abstract

Bu çalışmada, mekanik ve ısıl özelliklerinin radyal eksen boyunca üstel bir fonksiyonla değiştiği varsayılan, eksenel simetrik, ince, dikdörtgen profilli dairesel bir kanatçıktaki sıcaklık dağılımı ve sıcaklık farklarından dolayı oluşan ısıl gerilmeler, pseudospectral Chebysev ve sonlu elemanlar yöntemleri ile ele alınmıştır. Chebyshev yöntemin doğruluğu literatürde mevcut analitik çözümle karşılaştırılarak test edilmiştir. Kanatçık, ZrO_2/Ti-6Al-4V malzeme çifti ile derecelendirilmiş, uygulanan sınır koşulları altında sıcaklık dağılımı ve ısıl gerilmeler elde edilmiştir. Problem, pseudospektral Chebyshev ve sonlu elemanlar yöntemleri ile ayrı ayrı çözülmüş ve elde edilen sonuçlar grafiksel olarak karşılaştırılmıştır. Pseudospektral Chebyshev yönteminin sonlu elamanlar yöntemine göre daha az nokta sayısı ile yakın sonuçlar verdiği gözlemlenmiştir.

References

  • Arslantürk, C. (2017). Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity. Heat Mass Transfer, 45(4), 519-525. https://doi.org/10.1007/s00231-008-0446-9
  • Aziz, A., Torabi, M., & Zhang, K. (2013). Convective–radiative radial fins with convective base heating and convective–radiative tip cooling: homogeneous and functionally graded materials. Energy Conversion and Management, 74, 366-376. https://doi.org/10.1016/j.enconman.2013.05.034
  • Aziz, A., & Fang, T. (2010). Alternative solutions for longitudinal fins of rectangular, trapezoidal, and concave parabolic profiles. Energy conversion and Management, 51(11), 2188-2194. https://doi.org/10.1016/j.enconman.2010.03.012
  • Aziz, A., & Rahman, M. M. (2009). Thermal performance of a functionally graded radial fin. International Journal of Thermophysics, 30(5), 1637-1648. https://doi.org/10.1007/s10765-009-0627-x
  • Bazán, F. S. (2008). Chebyshev pseudospectral method for computing numerical solution of convection–diffusion equation. Applied Mathematics and Computation, 200(2), 537-546. https://doi.org/10.1016/j.amc.2007.11.026
  • Cengel, Y. A. (2003). Heat transfer:A practical appraoch 2nd ed., McGraw-Hill, New York.
  • Gaba, V. K., Tiwari, A. K., & Bhowmick, S. (2016). Performance of functionally graded exponential annular fins of constant weight. In Advances in Functionally Graded Materials and Structures. London, UK: IntechOpen. https://doi.org/10.5772/63100
  • Gaba, V. K., Tiwari, A. K., & Bhowmick, S. (2014). Thermal performance of functionally graded parabolic annular fins having constant weight. Journal of Mechanical Science and Technology, 28(10), 4309-4318. https://doi.org/10.1007/s12206-014-0945-1
  • Gardner, K. A. (1945). Efficiency of extended surface. Transactions of ASME, 67, 621-631.
  • Gottlieb, D. (1981). The stability of pseudospectral-Chebyshev methods. Mathematics of Computation, 36(153), 107-118. https://doi.org/10.1090/S0025-5718-1981-0595045-1
  • Iborra, A. A., & Campo, A. (2009). Approximate analytic temperature distribution and efficiency for annular fins of uniform thickness. International Journal of Thermal Sciences, 48(4), 773-780. https://doi.org/10.1016/j.ijthermalsci.2008.05.012
  • Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.
  • Khan, W. A., & Aziz, A. (2012). Transient heat transfer in a functionally graded convecting longitudinal fin. Heat and Mass Transfer, 48(10), 1745-1753. https://doi.org/10.1007/s00231-012-1020-z
  • Kraus, A. D., Aziz, A., Welty, J., & Sekulic, D. P. (2001). Extended surface heat transfer. Applied Mechanics Review. 54(5), B92-B92. https://doi.org/10.1115/1.1399680
  • Koizumi, M. F. G. M. (1997). FGM activities in Japan. Composites Part B: Engineering, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  • Kundu, B. (2017). Exact method for annular disc fins with heat generation and nonlinear heating. Journal of Thermophysics and Heat Transfer, 31(2), 337-345. https://doi.org/10.2514/1.T4977
  • Lee, H. L., Chang, W. J., Chen, W. L., & Yang, Y. C. (2012). Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions. Energy Conversion and Management, 57, 1-7. https://doi.org/10.1016/j.enconman.2011.12.002
  • Mallick, A., Ghosal, S., Sarkar, P. K., & Ranjan, R. (2015). Homotopy perturbation method for thermal stresses in an annular fin with variable thermal conductivity. Journal of Thermal Stresses, 38(1), 110-132. https://doi.org/10.1080/01495739.2014.981120
  • Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A. and Ford, R. G. (1999). Functionally Graded Materials Design Process and Applications, Springer, USA.
  • Peng, H. S., & Chen, C. L. (2011). Hybrid differential transformation and finite difference method to annular fin with temperature-dependent thermal conductivity. International Journal of Heat and Mass Transfer, 54(11-12), 2427-2433. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.019
  • Ranjan, R., Mallick, A., & Jana, P. (2019). Thermoelastic study of a functionally graded annular fin with variable thermal parameters using semiexact solution. Journal of Thermal stresses, 42(10), 1272-1297. https://doi.org/10.1080/01495739.2019.1646617
  • Reddy, J. N., & Chin, C. D. (1998). Thermomechanical analysis of functionally graded cylinders and plates. Journal of thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165
  • Roy, R., & Ghosal, S. (2017). Homotopy perturbation method for the analysis of heat transfer in an annular fin with temperature-dependent thermal conductivity. Journal of Heat Transfer, 139(2), 1223-1231. https://doi.org/10.1115/1.4034811
  • Timoshenko, S. P. and Goodier, J. N. (1970). Theory of Elasticity, McGraw-Hill, New York.
  • Trefethen, L. N. (2000). Spectral Methods in Matlab PA, Philadelphia:SIAM.
  • Tutuncu, N., & Temel, B. (2013). An efficient unified method for thermoelastic analysis of functionally graded rotating disks of variable thickness. Mechanics of Advanced Materials and Structures, 20(1), 38-46. https://doi.org/10.1080/15376494.2011.581413
  • Wang, C. C., Liao, W. J., & Yang, C. Y. (2013). Hybrid spline difference method for heat transfer and thermal stresses in annular fins. Numerical Heat Transfer, Part B: Fundamentals, 64(1), 71-88. https://doi.org/10.1080/10407790.2013.784140
  • Wu, S. S. (1997). Analysis on transient thermal stresses in an annular fin. Journal of thermal stresses, 20(6), 591-615. https://doi.org/10.1080/01495739708956120
  • Yildirim, A., Yarimpabuç, D., & Celebi, K. (2020). Transient thermal stress analysis of functionally graded annular fin with free base. Journal of Thermal Stresses, 43(9), 1138-1149. https://doi.org/10.1080/01495739.2020.1770644
  • Yıldırım, A., Yarımpabuç, D., & Celebi, K. (2019). Thermal stress analysis of functionally graded annular fin. Journal of Thermal stresses, 42(4), 440-451. https://doi.org/10.1080/01495739.2018.1469963
  • Yıldırım, A., Celebi, K. E. R. İ. M. C. A. N., & Yarımpabuç, D. (2019). A practical approach for thermal stress of functionally graded annular fin. Journal of Engineering Thermophysics, 28(4), 556-568. https://doi.org/10.1134/S1810232819040118
  • Yontar, O., Aydin, K., & Keles, I. (2020). Practical jointed approach to thermal performance of functionally graded material annular fin. Journal of Thermophysics and Heat Transfer, 34(1), 144-149. https://doi.org/10.2514/1.T5808
Year 2022, , 602 - 614, 03.12.2022
https://doi.org/10.17780/ksujes.1142771

Abstract

References

  • Arslantürk, C. (2017). Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity. Heat Mass Transfer, 45(4), 519-525. https://doi.org/10.1007/s00231-008-0446-9
  • Aziz, A., Torabi, M., & Zhang, K. (2013). Convective–radiative radial fins with convective base heating and convective–radiative tip cooling: homogeneous and functionally graded materials. Energy Conversion and Management, 74, 366-376. https://doi.org/10.1016/j.enconman.2013.05.034
  • Aziz, A., & Fang, T. (2010). Alternative solutions for longitudinal fins of rectangular, trapezoidal, and concave parabolic profiles. Energy conversion and Management, 51(11), 2188-2194. https://doi.org/10.1016/j.enconman.2010.03.012
  • Aziz, A., & Rahman, M. M. (2009). Thermal performance of a functionally graded radial fin. International Journal of Thermophysics, 30(5), 1637-1648. https://doi.org/10.1007/s10765-009-0627-x
  • Bazán, F. S. (2008). Chebyshev pseudospectral method for computing numerical solution of convection–diffusion equation. Applied Mathematics and Computation, 200(2), 537-546. https://doi.org/10.1016/j.amc.2007.11.026
  • Cengel, Y. A. (2003). Heat transfer:A practical appraoch 2nd ed., McGraw-Hill, New York.
  • Gaba, V. K., Tiwari, A. K., & Bhowmick, S. (2016). Performance of functionally graded exponential annular fins of constant weight. In Advances in Functionally Graded Materials and Structures. London, UK: IntechOpen. https://doi.org/10.5772/63100
  • Gaba, V. K., Tiwari, A. K., & Bhowmick, S. (2014). Thermal performance of functionally graded parabolic annular fins having constant weight. Journal of Mechanical Science and Technology, 28(10), 4309-4318. https://doi.org/10.1007/s12206-014-0945-1
  • Gardner, K. A. (1945). Efficiency of extended surface. Transactions of ASME, 67, 621-631.
  • Gottlieb, D. (1981). The stability of pseudospectral-Chebyshev methods. Mathematics of Computation, 36(153), 107-118. https://doi.org/10.1090/S0025-5718-1981-0595045-1
  • Iborra, A. A., & Campo, A. (2009). Approximate analytic temperature distribution and efficiency for annular fins of uniform thickness. International Journal of Thermal Sciences, 48(4), 773-780. https://doi.org/10.1016/j.ijthermalsci.2008.05.012
  • Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.
  • Khan, W. A., & Aziz, A. (2012). Transient heat transfer in a functionally graded convecting longitudinal fin. Heat and Mass Transfer, 48(10), 1745-1753. https://doi.org/10.1007/s00231-012-1020-z
  • Kraus, A. D., Aziz, A., Welty, J., & Sekulic, D. P. (2001). Extended surface heat transfer. Applied Mechanics Review. 54(5), B92-B92. https://doi.org/10.1115/1.1399680
  • Koizumi, M. F. G. M. (1997). FGM activities in Japan. Composites Part B: Engineering, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  • Kundu, B. (2017). Exact method for annular disc fins with heat generation and nonlinear heating. Journal of Thermophysics and Heat Transfer, 31(2), 337-345. https://doi.org/10.2514/1.T4977
  • Lee, H. L., Chang, W. J., Chen, W. L., & Yang, Y. C. (2012). Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions. Energy Conversion and Management, 57, 1-7. https://doi.org/10.1016/j.enconman.2011.12.002
  • Mallick, A., Ghosal, S., Sarkar, P. K., & Ranjan, R. (2015). Homotopy perturbation method for thermal stresses in an annular fin with variable thermal conductivity. Journal of Thermal Stresses, 38(1), 110-132. https://doi.org/10.1080/01495739.2014.981120
  • Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A. and Ford, R. G. (1999). Functionally Graded Materials Design Process and Applications, Springer, USA.
  • Peng, H. S., & Chen, C. L. (2011). Hybrid differential transformation and finite difference method to annular fin with temperature-dependent thermal conductivity. International Journal of Heat and Mass Transfer, 54(11-12), 2427-2433. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.019
  • Ranjan, R., Mallick, A., & Jana, P. (2019). Thermoelastic study of a functionally graded annular fin with variable thermal parameters using semiexact solution. Journal of Thermal stresses, 42(10), 1272-1297. https://doi.org/10.1080/01495739.2019.1646617
  • Reddy, J. N., & Chin, C. D. (1998). Thermomechanical analysis of functionally graded cylinders and plates. Journal of thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165
  • Roy, R., & Ghosal, S. (2017). Homotopy perturbation method for the analysis of heat transfer in an annular fin with temperature-dependent thermal conductivity. Journal of Heat Transfer, 139(2), 1223-1231. https://doi.org/10.1115/1.4034811
  • Timoshenko, S. P. and Goodier, J. N. (1970). Theory of Elasticity, McGraw-Hill, New York.
  • Trefethen, L. N. (2000). Spectral Methods in Matlab PA, Philadelphia:SIAM.
  • Tutuncu, N., & Temel, B. (2013). An efficient unified method for thermoelastic analysis of functionally graded rotating disks of variable thickness. Mechanics of Advanced Materials and Structures, 20(1), 38-46. https://doi.org/10.1080/15376494.2011.581413
  • Wang, C. C., Liao, W. J., & Yang, C. Y. (2013). Hybrid spline difference method for heat transfer and thermal stresses in annular fins. Numerical Heat Transfer, Part B: Fundamentals, 64(1), 71-88. https://doi.org/10.1080/10407790.2013.784140
  • Wu, S. S. (1997). Analysis on transient thermal stresses in an annular fin. Journal of thermal stresses, 20(6), 591-615. https://doi.org/10.1080/01495739708956120
  • Yildirim, A., Yarimpabuç, D., & Celebi, K. (2020). Transient thermal stress analysis of functionally graded annular fin with free base. Journal of Thermal Stresses, 43(9), 1138-1149. https://doi.org/10.1080/01495739.2020.1770644
  • Yıldırım, A., Yarımpabuç, D., & Celebi, K. (2019). Thermal stress analysis of functionally graded annular fin. Journal of Thermal stresses, 42(4), 440-451. https://doi.org/10.1080/01495739.2018.1469963
  • Yıldırım, A., Celebi, K. E. R. İ. M. C. A. N., & Yarımpabuç, D. (2019). A practical approach for thermal stress of functionally graded annular fin. Journal of Engineering Thermophysics, 28(4), 556-568. https://doi.org/10.1134/S1810232819040118
  • Yontar, O., Aydin, K., & Keles, I. (2020). Practical jointed approach to thermal performance of functionally graded material annular fin. Journal of Thermophysics and Heat Transfer, 34(1), 144-149. https://doi.org/10.2514/1.T5808
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Ali Yıldırım 0000-0001-5894-8986

Mehmet Eker 0000-0002-6785-1710

Durmuş Yarımpabuç 0000-0002-8763-1125

Volkan Arıkan 0000-0002-6102-6584

Kerimcan Çelebi 0000-0001-6294-0872

Publication Date December 3, 2022
Submission Date July 12, 2022
Published in Issue Year 2022

Cite

APA Yıldırım, A., Eker, M., Yarımpabuç, D., Arıkan, V., et al. (2022). İŞLEVSEL DERECELENDİRİLMİŞ DAİRESEL BİR KANATÇIĞIN TERMOELASTİK DAVRANIŞININ SAYISAL İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 602-614. https://doi.org/10.17780/ksujes.1142771