Research Article
BibTex RIS Cite

TERS TRAPEZ KESİTLİ BİR AKIŞ KANALINDA FARKLI BİR TRAPEZ EĞİM AÇISININ PEM YAKIT PİLİNİN PERFORMANSINA ETKİSİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) YÖNTEMİ İLE İNCELENMESİ

Year 2023, , 408 - 423, 03.06.2023
https://doi.org/10.17780/ksujes.1180483

Abstract

Bu çalışmada, PEM yakıt pilleri için ters yamuk kesitli kanal şekli hesaplamalı akışkanlar dinamiği (HAD) yöntemi ile incelenmiştir. ANSYS Fluent, elektrokimyasal reaksiyonlar, kütle, türler, enerji transferi ve potansiyel alan denklemlerini çözmek için uygulandı. Pillerdeki türlerin kütle oranı, bağıl nem ve sıcaklık dağılımı grafikleri ile polarizasyon ve güç yoğunluğu eğrileri elde edildi. Sonuçlar, PEM yakıt pilleri kanalı için yaygın olarak kullanılan kare kesit şekline sahip iki referans geometri ile karşılaştırıldı. Referans geometrilerinden biri ters yamuk kesitli kanal ile aynı kanal genişliği ve yüksekliğine sahipken, diğeri aynı kesit alanına sahiptir. Analiz sonuçları, ters yamuk kesitli akış kanalı şekline sahip pilin, kare kesitli akış kanalı şekline sahip pilden %32’den daha fazla güç yoğunluğuna sahip olduğunu, ancak su yönetiminin zayıf olduğunu göstermektedir.

References

  • Arif, M., Cheung, S. C. P., & Andrews, J. (2022). Numerical investigation of effects of different flow channel configurations on the 100 cm2 PEM fuel cell performance under different operating conditions. Catalysis Today, 397–399(June), 449–462. https://doi.org/10.1016/j.cattod.2021.07.016
  • Arun Saco, S., Thundil Karuppa Raj, R., & Karthikeyan, P. (2016). A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique. Energy, 113, 558–573. https://doi.org/10.1016/j.energy.2016.07.079
  • Awan, A., Saleem, M., & Basit, A. (2018). Simulation of proton exchange membrane fuel cell by using ANSYS Fluent. IOP Conference Series: Materials Science and Engineering, 414(1). https://doi.org/10.1088/1757-899X/414/1/012045
  • Carcadea, E., Ismail, M. S., Ingham, D. Bin, Patularu, L., Schitea, D., Marinoiu, A., … Varlam, M. (2021). Effects of geometrical dimensions of flow channels of a large-active-area PEM fuel cell: A CFD study. International Journal of Hydrogen Energy, 46(25), 13572–13582. https://doi.org/10.1016/j.ijhydene.2020.08.150
  • Carcadea, E., Varlam, M., Ismail, M., Ingham, D. B., Marinoiu, A., Raceanu, M., … Ion-Ebrasu, D. (2020). PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. International Journal of Hydrogen Energy, 45(14), 7968–7980. https://doi.org/10.1016/j.ijhydene.2019.08.219
  • Ferng, Y. M., & Su, A. (2007). A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance. International Journal of Hydrogen Energy, 32(17), 4466–4476. https://doi.org/10.1016/j.ijhydene.2007.05.012
  • Ibrahimoglu, B., Yilmazoglu, M. Z., & Celenk, S. (2017). Investigation of spiral flow-field design on the performance of a PEM Fuel Cell. Fuel Cells, 17(6), 786–793. https://doi.org/10.1002/fuce.201700076
  • Jourdani, M., & Mounir, H. (2015). Temperature Distribution Effect on the Performance of PEM Fuel Cell Modeling and Simulation Using Ansys Fluent. 3rd International Renewable and Sustainable Energy Conference (IRSEC) Institute of Electrical and Elctronics Engineer (IEEE) DOI: 10.1109/IRSEC.2015.7455082.
  • Kerkoub, Y., Benzaoui, A., Haddad, F., & Ziari, Y. K. (2018). Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Conversion and Management, 174(May), 260–275. https://doi.org/10.1016/j.enconman.2018.08.041
  • Li, C., Xu, X., Hu, H., Mei, N., & Yang, Y. (2021). Numerical investigation into the effect of serpentine flow channel with a variable cross-section on the performance of proton exchange membrane fuel cell. International Journal of Energy Research, 45(5), 7719–7731. https://doi.org/10.1002/er.6352
  • Li, Y., Zhou, Z., Liu, X., & Wu, W. T. (2019). Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Applied Energy, 242(November 2018), 1513–1527. https://doi.org/10.1016/j.apenergy.2019.03.189
  • Lim, B. H., Majlan, E. H., Daud, W. R. W., Rosli, M. I., & Husaini, T. (2020). Numerical investigation of the effect of three-dimensional modified parallel flow field designs on proton exchange membrane fuel cell performance. Chemical Engineering Science, 217, 115499. https://doi.org/10.1016/j.ces.2020.115499
  • Manso, A. P., Marzo, F. F., Mujika, M. G., Barranco, J., & Lorenzo, A. (2011). Numerical analysis of the influence of the channel cross-section aspect ratio on the performance of a PEM fuel cell with serpentine flow field design. International Journal of Hydrogen Energy, 36(11), 6795–6808. https://doi.org/10.1016/j.ijhydene.2011.02.099
  • Paulino, A. L. R., Cunha, E. F., Robalinho, E., Linardi, M., Korkischko, I., & Santiago, E. I. (2017). CFD Analysis of PEMFC flow channel cross sections. Fuel Cells, 17(1), 27–36. https://doi.org/10.1002/fuce.201600141
  • Penga, Ž., Tolj, I., & Barbir, F. (2016). Computational fluid dynamics study of PEM fuel cell performance for isothermal and non-uniform temperature boundary conditions. International Journal of Hydrogen Energy, 41(39), 17585–17594. https://doi.org/10.1016/j.ijhydene.2016.07.092
  • Wang, X. D., Lu, G., Duan, Y. Y., & Lee, D. J. (2012). Numerical analysis on performances of polymer electrolyte membrane fuel cells with various cathode flow channel geometries. International Journal of Hydrogen Energy, 37(20), 15778–15786. https://doi.org/10.1016/j.ijhydene.2012.04.028
  • Wang, Y., Ruiz Diaz, D. F., Chen, K. S., Wang, Z., & Adroher, X. C. (2020). Materials, technological status, and fundamentals of PEM fuel cells – A review. Materials Today, 32(February), 178–203. https://doi.org/10.1016/j.mattod.2019.06.005
  • Wilberforce, T., El-Hassan, Z., Khatib, F. N., Al Makky, A., Mooney, J., Barouaji, A., … Olabi, A. G. (2017). Development of Bi-polar plate design of PEM fuel cell using CFD techniques. International Journal of Hydrogen Energy, 42(40), 25663–25685. https://doi.org/10.1016/j.ijhydene.2017.08.093
  • Wilberforce, T., Ijaodola, O., Khatib, F. N., Ogungbemi, E. O., El Hassan, Z., Thompson, J., & Olabi, A. G. (2019). Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Science of the Total Environment, 688, 1016–1035. https://doi.org/10.1016/j.scitotenv.2019.06.397
  • Yi, J. S., & Van Nguyen, T. (1999). Multicomponent Transport in porous electrodes of proton exchange membrane fuel cells using the ınterdigitated gas distributors. Journal of The Electrochemical Society, 146(1), 38–45. https://doi.org/10.1149/1.1391561
  • Zhao, J., & Li, X. (2019). A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Conversion and Management, 199(September 2019), 112022. https://doi.org/10.1016/j.enconman.2019.112022

INVESTIGATION OF THE EFFECT OF A DIFFERENT TRAPEZOIDAL INCLINATION ANGLE IN A REVERSE TRAPEZOIDAL CROSS-SECTION FLOW CHANNEL ON THE PERFORMANCE OF THE PEM FUEL CELL WITH THE COMPUTATIONAL FLUID DYNAMIC (CFD) METHOD

Year 2023, , 408 - 423, 03.06.2023
https://doi.org/10.17780/ksujes.1180483

Abstract

In this work, a reverse trapezoidal cross-section channel shape for a single flow channel PEM fuel cell was examined with computational fluid dynamic (CFD) method. ANSYS Fluent was applied to solve electrochemical reactions, potential fields, mass, species, and energy transport equations. Species mass ratio, temperature distribution and relative humidity were obtained for the cell as well as the i-V and power density plots. The results were compared to two reference geometries with the commonly used square section shape for the channel. One reference geometry has the same channel width and height with the reverse trapezoidal cross-section channel while the other has the same cross-section area. The results indicate that the cell with reverse trapezoidal cross sectional flow channel shape has more than 32% higher power density than the cell with square cross-sectional flow channel shapes, but poor water management.

References

  • Arif, M., Cheung, S. C. P., & Andrews, J. (2022). Numerical investigation of effects of different flow channel configurations on the 100 cm2 PEM fuel cell performance under different operating conditions. Catalysis Today, 397–399(June), 449–462. https://doi.org/10.1016/j.cattod.2021.07.016
  • Arun Saco, S., Thundil Karuppa Raj, R., & Karthikeyan, P. (2016). A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique. Energy, 113, 558–573. https://doi.org/10.1016/j.energy.2016.07.079
  • Awan, A., Saleem, M., & Basit, A. (2018). Simulation of proton exchange membrane fuel cell by using ANSYS Fluent. IOP Conference Series: Materials Science and Engineering, 414(1). https://doi.org/10.1088/1757-899X/414/1/012045
  • Carcadea, E., Ismail, M. S., Ingham, D. Bin, Patularu, L., Schitea, D., Marinoiu, A., … Varlam, M. (2021). Effects of geometrical dimensions of flow channels of a large-active-area PEM fuel cell: A CFD study. International Journal of Hydrogen Energy, 46(25), 13572–13582. https://doi.org/10.1016/j.ijhydene.2020.08.150
  • Carcadea, E., Varlam, M., Ismail, M., Ingham, D. B., Marinoiu, A., Raceanu, M., … Ion-Ebrasu, D. (2020). PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. International Journal of Hydrogen Energy, 45(14), 7968–7980. https://doi.org/10.1016/j.ijhydene.2019.08.219
  • Ferng, Y. M., & Su, A. (2007). A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance. International Journal of Hydrogen Energy, 32(17), 4466–4476. https://doi.org/10.1016/j.ijhydene.2007.05.012
  • Ibrahimoglu, B., Yilmazoglu, M. Z., & Celenk, S. (2017). Investigation of spiral flow-field design on the performance of a PEM Fuel Cell. Fuel Cells, 17(6), 786–793. https://doi.org/10.1002/fuce.201700076
  • Jourdani, M., & Mounir, H. (2015). Temperature Distribution Effect on the Performance of PEM Fuel Cell Modeling and Simulation Using Ansys Fluent. 3rd International Renewable and Sustainable Energy Conference (IRSEC) Institute of Electrical and Elctronics Engineer (IEEE) DOI: 10.1109/IRSEC.2015.7455082.
  • Kerkoub, Y., Benzaoui, A., Haddad, F., & Ziari, Y. K. (2018). Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Conversion and Management, 174(May), 260–275. https://doi.org/10.1016/j.enconman.2018.08.041
  • Li, C., Xu, X., Hu, H., Mei, N., & Yang, Y. (2021). Numerical investigation into the effect of serpentine flow channel with a variable cross-section on the performance of proton exchange membrane fuel cell. International Journal of Energy Research, 45(5), 7719–7731. https://doi.org/10.1002/er.6352
  • Li, Y., Zhou, Z., Liu, X., & Wu, W. T. (2019). Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Applied Energy, 242(November 2018), 1513–1527. https://doi.org/10.1016/j.apenergy.2019.03.189
  • Lim, B. H., Majlan, E. H., Daud, W. R. W., Rosli, M. I., & Husaini, T. (2020). Numerical investigation of the effect of three-dimensional modified parallel flow field designs on proton exchange membrane fuel cell performance. Chemical Engineering Science, 217, 115499. https://doi.org/10.1016/j.ces.2020.115499
  • Manso, A. P., Marzo, F. F., Mujika, M. G., Barranco, J., & Lorenzo, A. (2011). Numerical analysis of the influence of the channel cross-section aspect ratio on the performance of a PEM fuel cell with serpentine flow field design. International Journal of Hydrogen Energy, 36(11), 6795–6808. https://doi.org/10.1016/j.ijhydene.2011.02.099
  • Paulino, A. L. R., Cunha, E. F., Robalinho, E., Linardi, M., Korkischko, I., & Santiago, E. I. (2017). CFD Analysis of PEMFC flow channel cross sections. Fuel Cells, 17(1), 27–36. https://doi.org/10.1002/fuce.201600141
  • Penga, Ž., Tolj, I., & Barbir, F. (2016). Computational fluid dynamics study of PEM fuel cell performance for isothermal and non-uniform temperature boundary conditions. International Journal of Hydrogen Energy, 41(39), 17585–17594. https://doi.org/10.1016/j.ijhydene.2016.07.092
  • Wang, X. D., Lu, G., Duan, Y. Y., & Lee, D. J. (2012). Numerical analysis on performances of polymer electrolyte membrane fuel cells with various cathode flow channel geometries. International Journal of Hydrogen Energy, 37(20), 15778–15786. https://doi.org/10.1016/j.ijhydene.2012.04.028
  • Wang, Y., Ruiz Diaz, D. F., Chen, K. S., Wang, Z., & Adroher, X. C. (2020). Materials, technological status, and fundamentals of PEM fuel cells – A review. Materials Today, 32(February), 178–203. https://doi.org/10.1016/j.mattod.2019.06.005
  • Wilberforce, T., El-Hassan, Z., Khatib, F. N., Al Makky, A., Mooney, J., Barouaji, A., … Olabi, A. G. (2017). Development of Bi-polar plate design of PEM fuel cell using CFD techniques. International Journal of Hydrogen Energy, 42(40), 25663–25685. https://doi.org/10.1016/j.ijhydene.2017.08.093
  • Wilberforce, T., Ijaodola, O., Khatib, F. N., Ogungbemi, E. O., El Hassan, Z., Thompson, J., & Olabi, A. G. (2019). Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Science of the Total Environment, 688, 1016–1035. https://doi.org/10.1016/j.scitotenv.2019.06.397
  • Yi, J. S., & Van Nguyen, T. (1999). Multicomponent Transport in porous electrodes of proton exchange membrane fuel cells using the ınterdigitated gas distributors. Journal of The Electrochemical Society, 146(1), 38–45. https://doi.org/10.1149/1.1391561
  • Zhao, J., & Li, X. (2019). A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Conversion and Management, 199(September 2019), 112022. https://doi.org/10.1016/j.enconman.2019.112022
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Yunus Sayan 0000-0002-0871-6842

Publication Date June 3, 2023
Submission Date September 26, 2022
Published in Issue Year 2023

Cite

APA Sayan, Y. (2023). INVESTIGATION OF THE EFFECT OF A DIFFERENT TRAPEZOIDAL INCLINATION ANGLE IN A REVERSE TRAPEZOIDAL CROSS-SECTION FLOW CHANNEL ON THE PERFORMANCE OF THE PEM FUEL CELL WITH THE COMPUTATIONAL FLUID DYNAMIC (CFD) METHOD. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(2), 408-423. https://doi.org/10.17780/ksujes.1180483