Research Article
BibTex RIS Cite

ALKALI ÖN İŞLEMİN AŞINMA SONRASI LYOCELL DOKUMA KUMAŞ ÖZELLİKLERİNE ETKİSİ

Year 2023, , 801 - 811, 03.12.2023
https://doi.org/10.17780/ksujes.1274430

Abstract

Bu çalışmada, Lyocell dokuma kumaşlara liflerin fibrilasyon eğilimini azaltmak için çeşitli konsantrasyonlarda alkali ön işlem uygulanmış ve alkali ön işlemin Lyocell kumaşların aşınma sonrası çekme ve yırtılma özelliklerine etkileri incelenmiştir. Alkali ön işlem, Lyocell liflerin fibrilasyonunu azaltmıştır. Bununla birlikte, yanal lif şişmesi nedeniyle artan hacim ve ipliklerin bükümlü yapısının zarar görmesinden dolayı kumaşta çekme meydana gelmiştir. Çözgü/atkı sıklıkları ve krimp oranları, alkali konsantrasyonları arttıkça artmıştır. Alkali ön işlemin neden olduğu dayanım kaybı nedeniyle, işlem görmemiş Lyocell kumaşların kopma ve yırtılma dayanımları, alkali ön işlem görmüş kumaşlara kıyasla daha yüksektir. Aşınma yükü, kumaşlarda lif kırılmalarına ve lif dolaşmalarına neden olmuş ve hem kopma hem de yırtılma dayanımlarını azaltmıştır. Kumaş yüzeyinde uzun atlamalara sahip dokuma türleri, aşınma yüküne maruz kalarak daha fazla hasar görmüş ve bu da daha fazla dayanım kaybı ile sonuçlanmıştır.

Project Number

2017/7-176 YLS

References

  • Atıcı, A., Kaya, G. (2019). Effects of alkali pretreatment on the appearance and structural properties of lyocell woven fabrics with different weave types, Tekstil ve Mühendis, 26, 113, 52-62.
  • Bilisik, K., Yolacan, G. (2011). Tensile and tearing properties of newly developed structural denim fabrics after abrasion, Fibers & Textiles in Eastern Europe, 19(5), 54-59.
  • Broadbent, A.D. (2001). Basic Principles of Textile Coloration, Bradford: Society of Dyers and Colorists. Franks, N.E., Varga, J.K. (1980). 4145532. Process for Making Precipitated Cellulose, US Patent.
  • Gindl, W., Martinschitz, K.J., Boesecke, P., Keckes, J. (2006). Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films, Biomacromolecules, 7, 3146-3150.
  • Jaturapiree, A., Manian, A.P., Lenninger, M., Bechtold, T. (2011). The Influence of alkali pretreatments in lyocell resin finishing- Changes in fiber accessibility to crosslinker and catalyst, Carbohydrate Polymers, 86, 612-620.
  • Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material, Angewandte Chemie International Edition, 44(22), 3358-3393.
  • Manian, A.P., Jaturapiree, A., Bechtold, T. (2018). Salt sorption on regenerated cellulosic fibers: electrokinetic measurements, Cellulose, 25, 3307-3314.
  • Manian, A.P., Rous, M.A., Lenninger, M., Roeder, T., Schuster, K.C., Bechtold, T. (2008). The influence of alkali pretreatments in lyocell resin finishing - fiber structure, Carbohydrate Polymers, 71, 664-671.
  • Manian, A.P., Rous, M.A., Schuster, K.C., Bechtold, T. (2006). The influence of alkali pretreatments in lyocell resin finishing- resin distribution and mechanical properties, Journal of Applied Polymer Science, 100, 3596-3601.
  • Nechwatal, A., Nicolai, M., Mieck, K.P., Heublein, B., Kuhne, G., Klemm, D. (1999). Studies on the wet fibrillation of lyocell fibers, Angewandte Makromolekulare Chemie, 271, 84-92.
  • Ozturk, H.B., Okubayashi, S., Bechtold, T. (2006). Splitting tendency of cellulosic fibers - Part 1. The effect of shear force on mechanical stability of swollen Lyocell fibers, Cellulose, 13(4) 393-402.
  • Ozturk, H.B., Potthast, A., Rosenau, T., Abu-Rous, M., MacNaughtan, B., Schuster, C., Mitchell, J.R., Bechtold, T. 2009. Changes in the intra- and inter-fibrillar structure of lyocell (Tencel®) fibers caused by NaOH treatment, Cellulose, 16, 37-52.
  • Periyasamy, A.P. (2020). Effects of alkali pretreatment on lyocell woven fabric and its influence on pilling properties, The Journal of The Textile Institute, 111(6), 846-854.
  • Poongodi, G.R., Sukumar, N., Subramnaiam, V., Radhalakshmi, Y.C. (2021). Effects of alkali treatment and strain hardening on the mechanical, dye uptake, and structural properties of regenerated cellulosic yarns, Journal of Natural Fibers, 18(1), 122-135.
  • Renfrew, A.H.M., Phillips, D.A.S. (2003). Protection of lyocell fibers against fibrillation: Mode of action of the crosslinking agent 2,4-dichloro-6-(b-sulphatoethylsulphonyl) aniline-s-triazine, Coloration Technology, 119, 116-120.
  • Rojo, E., Alonso, M., Dominguez, J.C., Saz-Orozco, B.D., Oliet, M., Rodriguez, F. (2013). Alkali treatment of viscose cellulosic fibers from eucalyptus wood: Structural, morphological, and thermal analysis, Journal of Applied Polymer Science, 130, 2198-2204.
  • Siroky, J., Blackburn, R.S., Bechtold, T. (2011). Influence of fabric structure on sodium hydroxide release from woven lyocell, Textile Research Journal, 81(16), 1627-1637.
  • Umur, Y. (2010). The Influence of fibrilation on the strength values and elongation of the rejenerated cellulosic fibers, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 15(1), 121-133.
  • Xu, Y., Xu, Y., Yue, X. (2017). Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp, Cellulose, 24, 967-976. Yolacan, G. (2009). Effects of Alkali Pretreatment on Dye Exhaustion, Color Values, Color Fastness, Tensile and Surface Properties of Lyocell Yarns, Fibers and Polymers, 10(5), 625-635.
  • Zhang, H., Shao, H., Hu, X. (2006). Effect of heat treatment on the structure and properties of lyocell fibers, Journal of Applied Polymer Science, 101, 1738-1743.
  • Zhang, W., Okubayashi, S., Bechtold, T. (2005). Fibrillation tendency of cellulosic fibers-Part 3: Effects of alkali pretreatment of lyocell fiber, Carbohydrate Polymers, 59, 173-179.

INFLUENCES OF ALKALI PRETREATMENT ON LYOCELL WOVEN FABRIC PROPERTIES AFTER ABRASION

Year 2023, , 801 - 811, 03.12.2023
https://doi.org/10.17780/ksujes.1274430

Abstract

In this study, alkali pretreatment in various concentrations were applied to Lyocell woven fabrics to decrease the fibrillation tendency of fibers and the influences of alkali pretreatment on tensile and tearing properties of Lyocell fabrics after abrasion were investigated. Alkali pretreatment reduced fibrillation of Lyocell fibers. However, fabric shrinkage occurred because of the increased volume and damaged twisted structure of yarns due to the lateral fiber swelling. The warp/weft densities and crimp ratios increased as the alkali concentrations increased. The breaking and tearing loads of untreated Lyocell fabrics were higher than those of alkali pretreated fabrics since the strength loss caused by alkali pretreatment. The abrasive load caused fiber breakages and fiber entanglements on fabrics and decreased the both breaking and tearing loads. The weave types with long floating interlacements on the fabric surface were more severely damaged by exposing to abrasive load and resulted as higher strength reduction.

Supporting Institution

Kahramanmaras Sutcu Imam University Scientific Research Projects Unit

Project Number

2017/7-176 YLS

References

  • Atıcı, A., Kaya, G. (2019). Effects of alkali pretreatment on the appearance and structural properties of lyocell woven fabrics with different weave types, Tekstil ve Mühendis, 26, 113, 52-62.
  • Bilisik, K., Yolacan, G. (2011). Tensile and tearing properties of newly developed structural denim fabrics after abrasion, Fibers & Textiles in Eastern Europe, 19(5), 54-59.
  • Broadbent, A.D. (2001). Basic Principles of Textile Coloration, Bradford: Society of Dyers and Colorists. Franks, N.E., Varga, J.K. (1980). 4145532. Process for Making Precipitated Cellulose, US Patent.
  • Gindl, W., Martinschitz, K.J., Boesecke, P., Keckes, J. (2006). Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films, Biomacromolecules, 7, 3146-3150.
  • Jaturapiree, A., Manian, A.P., Lenninger, M., Bechtold, T. (2011). The Influence of alkali pretreatments in lyocell resin finishing- Changes in fiber accessibility to crosslinker and catalyst, Carbohydrate Polymers, 86, 612-620.
  • Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material, Angewandte Chemie International Edition, 44(22), 3358-3393.
  • Manian, A.P., Jaturapiree, A., Bechtold, T. (2018). Salt sorption on regenerated cellulosic fibers: electrokinetic measurements, Cellulose, 25, 3307-3314.
  • Manian, A.P., Rous, M.A., Lenninger, M., Roeder, T., Schuster, K.C., Bechtold, T. (2008). The influence of alkali pretreatments in lyocell resin finishing - fiber structure, Carbohydrate Polymers, 71, 664-671.
  • Manian, A.P., Rous, M.A., Schuster, K.C., Bechtold, T. (2006). The influence of alkali pretreatments in lyocell resin finishing- resin distribution and mechanical properties, Journal of Applied Polymer Science, 100, 3596-3601.
  • Nechwatal, A., Nicolai, M., Mieck, K.P., Heublein, B., Kuhne, G., Klemm, D. (1999). Studies on the wet fibrillation of lyocell fibers, Angewandte Makromolekulare Chemie, 271, 84-92.
  • Ozturk, H.B., Okubayashi, S., Bechtold, T. (2006). Splitting tendency of cellulosic fibers - Part 1. The effect of shear force on mechanical stability of swollen Lyocell fibers, Cellulose, 13(4) 393-402.
  • Ozturk, H.B., Potthast, A., Rosenau, T., Abu-Rous, M., MacNaughtan, B., Schuster, C., Mitchell, J.R., Bechtold, T. 2009. Changes in the intra- and inter-fibrillar structure of lyocell (Tencel®) fibers caused by NaOH treatment, Cellulose, 16, 37-52.
  • Periyasamy, A.P. (2020). Effects of alkali pretreatment on lyocell woven fabric and its influence on pilling properties, The Journal of The Textile Institute, 111(6), 846-854.
  • Poongodi, G.R., Sukumar, N., Subramnaiam, V., Radhalakshmi, Y.C. (2021). Effects of alkali treatment and strain hardening on the mechanical, dye uptake, and structural properties of regenerated cellulosic yarns, Journal of Natural Fibers, 18(1), 122-135.
  • Renfrew, A.H.M., Phillips, D.A.S. (2003). Protection of lyocell fibers against fibrillation: Mode of action of the crosslinking agent 2,4-dichloro-6-(b-sulphatoethylsulphonyl) aniline-s-triazine, Coloration Technology, 119, 116-120.
  • Rojo, E., Alonso, M., Dominguez, J.C., Saz-Orozco, B.D., Oliet, M., Rodriguez, F. (2013). Alkali treatment of viscose cellulosic fibers from eucalyptus wood: Structural, morphological, and thermal analysis, Journal of Applied Polymer Science, 130, 2198-2204.
  • Siroky, J., Blackburn, R.S., Bechtold, T. (2011). Influence of fabric structure on sodium hydroxide release from woven lyocell, Textile Research Journal, 81(16), 1627-1637.
  • Umur, Y. (2010). The Influence of fibrilation on the strength values and elongation of the rejenerated cellulosic fibers, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 15(1), 121-133.
  • Xu, Y., Xu, Y., Yue, X. (2017). Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp, Cellulose, 24, 967-976. Yolacan, G. (2009). Effects of Alkali Pretreatment on Dye Exhaustion, Color Values, Color Fastness, Tensile and Surface Properties of Lyocell Yarns, Fibers and Polymers, 10(5), 625-635.
  • Zhang, H., Shao, H., Hu, X. (2006). Effect of heat treatment on the structure and properties of lyocell fibers, Journal of Applied Polymer Science, 101, 1738-1743.
  • Zhang, W., Okubayashi, S., Bechtold, T. (2005). Fibrillation tendency of cellulosic fibers-Part 3: Effects of alkali pretreatment of lyocell fiber, Carbohydrate Polymers, 59, 173-179.
There are 21 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Textile Engineering
Authors

Arzu Atıcı 0000-0002-2226-8337

Gaye Kaya 0000-0003-1866-4799

Project Number 2017/7-176 YLS
Publication Date December 3, 2023
Submission Date March 31, 2023
Published in Issue Year 2023

Cite

APA Atıcı, A., & Kaya, G. (2023). INFLUENCES OF ALKALI PRETREATMENT ON LYOCELL WOVEN FABRIC PROPERTIES AFTER ABRASION. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 801-811. https://doi.org/10.17780/ksujes.1274430