FABRICATION OF COPPER OXIDE NANOPARTICLES DOPED PCL/PVP NANOFIBROUS MATS BY ELECTROSPINNING AND EVALUATION OF THEIR ANTIBACTERIAL ACTIVITIES
Year 2023,
, 823 - 833, 03.12.2023
Fatih Erci
,
Fatma Bayram Sarıipek
Abstract
In this study, PCL/PVP/CuO nanofibrous mats for antibacterial applications were fabricated by electrospinning technique using PCL/PVP as a biopolymer matrix and copper oxide nanoparticles (CuONPs) as antimicrobial agents. PCL/PVP/CuO nanofibrous mats were successfully produced by doping different ratios of CuONPs (0.5%, 1%, and 2% wt) into the PCL/PVP solution. The chemical, morphological, and wetting properties of the prepared composite nanofibrous mats were evaluated by FT-IR, FE-SEM analysis, and water contact angle measurements. The morphological investigation indicated that the fiber diameters of the resulting nanofibers decreased as the CuONP content added to the PCL/PVP matrix increased, and the mean fiber diameter value measured for the PCL/PVP/2%CuONPs nanofibrous sample was 186.73. Moreover, wetting behavior of nanofiber surfaces displayed that the incorporation of PVP significantly enhanced the surface wettability of PCL with hydrophobic properties, but the addition of CuONPs to the obtained PCL/PVP matrix decreased it. An in vitro bactericidal assay was performed to investigate the efficacy of PCL/PVP/CuO nanofibrous samples against Staphylococcus aureus. The addition of CuONPs to the fibers led to antibacterial activity, which was found to increase with higher doping ratios. The results showed the potential of PCL/PVP/CuO nanofibrous mats to serve as an effective biomaterial for antibacterial applications.
Thanks
In this study, the infrastructure of Necmettin Erbakan University Science and Technology Research and Application Center (BITAM) was used.
References
- Ajalloueian, F., Tavanai, H., Hilborn, J., Donzel-Gargand, O., Leifer, K., Wickham, A., & Arpanaei, A. (2014). Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications. BioMed Research International, 2014, 475280. https://doi.org/10.1155/2014/475280
- Chakrapani, V. Y., Gnanamani, A., Giridev, V. R., Madhusoothanan, M., & Sekaran, G. (2012). Electrospinning of type I collagen and PCL nanofibers using acetic acid. Journal of Applied Polymer Science, 125(4), 3221–3227. https://doi.org/https://doi.org/10.1002/app.36504
- Chaudhuri, B., Mondal, B., Ray, S. K., & Sarkar, S. C. (2016). A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids and Surfaces B: Biointerfaces, 143, 71–80. https://doi.org/https://doi.org/10.1016/j.colsurfb.2016.03.027
- Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 101, 430–433. https://doi.org/https://doi.org/10.1016/j.colsurfb.2012.07.002
- Díez-Pascual, A. M., & Luceño-Sánchez, J. A. (2021). Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers, 13(13). https://doi.org/10.3390/polym13132105
- Erci, F., Cakir-Koc, R., Yontem, M., & Torlak, E. (2020). Synthesis of biologically active copper oxide nanoparticles as promising novel antibacterial-antibiofilm agents. Preparative Biochemistry & Biotechnology, 50(6), 538–548. https://doi.org/10.1080/10826068.2019.1711393
- Fadaie, M., Mirzaei, E., Geramizadeh, B., & Asvar, Z. (2018). Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 199, 628–640.
- Hu, M., Li, C., Li, X., Zhou, M., Sun, J., Sheng, F., … Lu, L. (2018). Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1248–1257. https://doi.org/10.1080/21691401.2017.1366339
- Jia, Y., Huang, G., Dong, F., Liu, Q., & Nie, W. (2016). Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polymer Composites, 37(9), 2847–2854. https://doi.org/10.1002/pc.23481
- Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/J.ARABJC.2017.05.011
- Li, R., Cheng, Z., Wen, R., Zhao, X., Yu, X., Sun, L., … Kang, L. (2018). Novel SA@Ca2+/RCSPs core–shell structure nanofibers by electrospinning for wound dressings. RSC Advances, 8(28), 15558–15566. https://doi.org/10.1039/C8RA00784E
- Li, R., Cheng, Z., Yu, X., Wang, S., Han, Z., & Kang, L. (2019a). Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Materials Letters, 254, 206–209. https://doi.org/https://doi.org/10.1016/j.matlet.2019.07.075
- Li, R., Cheng, Z., Yu, X., Wang, S., Han, Z., & Kang, L. (2019b). Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Materials Letters, 254, 206–209. https://doi.org/https://doi.org/10.1016/j.matlet.2019.07.075
- Liu, Y., Liu, Y., Li, X., Qian, Y., Lv, L., & Wang, Y. (2022). Fabrication and research of Mg(OH)2/PCL/PVP nanofiber membranes loaded by antibacterial and biosafe Mg(OH)2 nanoparticles. Polymer Testing, 112, 107635. https://doi.org/https://doi.org/10.1016/j.polymertesting.2022.107635
- Maleki, H., Azimi, B., Ismaeilimoghadam, S., & Danti, S. (2022). Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. Applied Sciences, 12(6). https://doi.org/10.3390/app12063192
- Mallakpour, S., & Mansourzadeh, S. (2017). Application of CuO nanoparticles modified with vitamin B1 for the production of poly(vinyl alcohol)/CuO nanocomposite films with enhanced optical, thermal and mechanical properties. Polymers for Advanced Technologies, 28(12), 1823–1830. https://doi.org/https://doi.org/10.1002/pat.4068
- Mayilswamy, N., Jaya Prakash, N., & Kandasubramanian, B. (2023). Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. International Journal of Polymeric Materials and Polymeric Biomaterials, 72(6), 433–459. https://doi.org/10.1080/00914037.2021.2021905
- Qi, Y., Zhai, H., Sun, Y., Xu, H., Wu, S., & Chen, S. (2021). Electrospun hybrid nanofibrous meshes with adjustable performance for potential use in soft tissue engineering. Textile Research Journal, 92(9–10), 1537–1549. https://doi.org/10.1177/00405175211063904
- Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60(1), 75–80. https://doi.org/10.1007/s13213-010-0015-6
- Raina, N., Pahwa, R., Khosla, J. K., Gupta, P. N., & Gupta, M. (2022). Polycaprolactone-based materials in wound healing applications. Polymer Bulletin, 79(9), 7041–7063. https://doi.org/10.1007/s00289-021-03865-w
- Sahooli, M., Sabbaghi, S., & Saboori, R. (2012). Synthesis and characterization of mono sized CuO nanoparticles. Materials Letters, 81, 169–172. https://doi.org/https://doi.org/10.1016/j.matlet.2012.04.148
- Saracino, E., Cirillo, V., Marrese, M., Guarino, V., Benfenati, V., Zamboni, R., & Ambrosio, L. (2021). Structural and functional properties of astrocytes on PCL based electrospun fibres. Materials Science and Engineering: C, 118, 111363.
- Sarıipek, F. B., Özaytekin, İ., & Erci, F. (2023). Effect of ultrasound treatment on bacteriostatic activity of piezoelectric <scp> PHB‐TiO 2 </scp> hybrid biodegradable scaffolds prepared by electrospinning technique. Journal of Applied Polymer Science, 140(6). https://doi.org/10.1002/app.53437
- Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1), 65. https://doi.org/10.1186/s12951-017-0308-z
- Suganya, S., Senthil Ram, T., Lakshmi, B. S., & Giridev, V. R. (2011). Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. Journal of Applied Polymer Science, 121(5), 2893–2899. https://doi.org/https://doi.org/10.1002/app.33915
- Wang, L., Gang, X., Xiao, Y., Ren, Y., Wang, J., Niu, B., & Li, W. (2023). Preparation of composite films composed of polyvinyl alcohol, shellac and carboxymethyl chitosan-CuO nanoparticles and their application in food preservation. Journal of Polymer Research, 30(2), 63. https://doi.org/10.1007/s10965-023-03438-7
- Wang, Y., Liu, Y., Qian, Y., Lv, L., Li, X., & Liu, Y. (2022). Characteristics of MgO/PCL/PVP antibacterial nanofiber membranes produced by electrospinning technology. Surfaces and Interfaces, 28, 101661. https://doi.org/https://doi.org/10.1016/j.surfin.2021.101661
BAKIR OKSİT NANOPARTİKÜL KATKILI PCL/PVP NANOLİFLİ MATLARIN ELEKTROÇEKİM İLE ÜRETİMİ VE ANTİBAKTERİYEL AKTİVİTELERİNİN DEĞERLENDİRİLMESİ
Year 2023,
, 823 - 833, 03.12.2023
Fatih Erci
,
Fatma Bayram Sarıipek
Abstract
Bu çalışmada, biyopolimer matris olarak PCL/PVP ve antimikrobiyal ajan olarak bakır oksit nanopartikülleri (CuONPs) kullanılarak elektroçekim tekniği ile antibakteriyel uygulamalar için PCL/PVP/CuO nanolifli matlar üretildi. PCL/PVP/CuO nanolifli matlar, PCL/PVP çözeltisine farklı oranlarda CuONPs’in (ağırlıkça %0,5, %1 ve %2) katkılanmasıyla başarılı bir şekilde üretildi. Hazırlanan kompozit nanolifli matların kimyasal, morfolojik ve ıslanma özellikleri FT-IR, FE-SEM analizleri ve temas açısı ölçümü ile değerlendirildi. Morfolojik inceleme, PCL/PVP matrisine eklenen CuONPs içeriği arttıkça sonuçlanan nanoliflerin lif çaplarının azaldığını ve PCL/PVP/2%CuONPs nanolifli örneği için ölçülen ortalama lif çapı değerinin 186.73o olduğunu gösterdi. Dahası, nanolif yüzeylerinin ıslanma davranışı, PVP'nin dahil edilmesinin, hidrofobik özelliklere sahip PCL'ın yüzey ıslanabilirliğini önemli ölçüde arttırırken ancak elde edilen PCL/PVP matrise CuONPs ilavesinin ise azalttığını gösterdi. PCL/PVP/CuO nanoliflli örneklerinin Staphylococcus aureus'a karşı etkinliğini araştırmak için bir in vitro antibakteriyel aktivite testi gerçekleştirildi. CuONPs’ın liflere eklenmesi antibakteriyel aktiviteye yol açtı ve bu aktivitenin daha yüksek nanopartikül katkılanma oranlarıyla arttığı bulundu. Sonuçlar, PCL/PVP/CuO nanolifli matların antibakteriyel uygulamalar için etkili bir biyomalzeme olarak işlev görebilme potansiyelini gösterdi.
References
- Ajalloueian, F., Tavanai, H., Hilborn, J., Donzel-Gargand, O., Leifer, K., Wickham, A., & Arpanaei, A. (2014). Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications. BioMed Research International, 2014, 475280. https://doi.org/10.1155/2014/475280
- Chakrapani, V. Y., Gnanamani, A., Giridev, V. R., Madhusoothanan, M., & Sekaran, G. (2012). Electrospinning of type I collagen and PCL nanofibers using acetic acid. Journal of Applied Polymer Science, 125(4), 3221–3227. https://doi.org/https://doi.org/10.1002/app.36504
- Chaudhuri, B., Mondal, B., Ray, S. K., & Sarkar, S. C. (2016). A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids and Surfaces B: Biointerfaces, 143, 71–80. https://doi.org/https://doi.org/10.1016/j.colsurfb.2016.03.027
- Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 101, 430–433. https://doi.org/https://doi.org/10.1016/j.colsurfb.2012.07.002
- Díez-Pascual, A. M., & Luceño-Sánchez, J. A. (2021). Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers, 13(13). https://doi.org/10.3390/polym13132105
- Erci, F., Cakir-Koc, R., Yontem, M., & Torlak, E. (2020). Synthesis of biologically active copper oxide nanoparticles as promising novel antibacterial-antibiofilm agents. Preparative Biochemistry & Biotechnology, 50(6), 538–548. https://doi.org/10.1080/10826068.2019.1711393
- Fadaie, M., Mirzaei, E., Geramizadeh, B., & Asvar, Z. (2018). Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 199, 628–640.
- Hu, M., Li, C., Li, X., Zhou, M., Sun, J., Sheng, F., … Lu, L. (2018). Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1248–1257. https://doi.org/10.1080/21691401.2017.1366339
- Jia, Y., Huang, G., Dong, F., Liu, Q., & Nie, W. (2016). Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polymer Composites, 37(9), 2847–2854. https://doi.org/10.1002/pc.23481
- Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/J.ARABJC.2017.05.011
- Li, R., Cheng, Z., Wen, R., Zhao, X., Yu, X., Sun, L., … Kang, L. (2018). Novel SA@Ca2+/RCSPs core–shell structure nanofibers by electrospinning for wound dressings. RSC Advances, 8(28), 15558–15566. https://doi.org/10.1039/C8RA00784E
- Li, R., Cheng, Z., Yu, X., Wang, S., Han, Z., & Kang, L. (2019a). Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Materials Letters, 254, 206–209. https://doi.org/https://doi.org/10.1016/j.matlet.2019.07.075
- Li, R., Cheng, Z., Yu, X., Wang, S., Han, Z., & Kang, L. (2019b). Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Materials Letters, 254, 206–209. https://doi.org/https://doi.org/10.1016/j.matlet.2019.07.075
- Liu, Y., Liu, Y., Li, X., Qian, Y., Lv, L., & Wang, Y. (2022). Fabrication and research of Mg(OH)2/PCL/PVP nanofiber membranes loaded by antibacterial and biosafe Mg(OH)2 nanoparticles. Polymer Testing, 112, 107635. https://doi.org/https://doi.org/10.1016/j.polymertesting.2022.107635
- Maleki, H., Azimi, B., Ismaeilimoghadam, S., & Danti, S. (2022). Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. Applied Sciences, 12(6). https://doi.org/10.3390/app12063192
- Mallakpour, S., & Mansourzadeh, S. (2017). Application of CuO nanoparticles modified with vitamin B1 for the production of poly(vinyl alcohol)/CuO nanocomposite films with enhanced optical, thermal and mechanical properties. Polymers for Advanced Technologies, 28(12), 1823–1830. https://doi.org/https://doi.org/10.1002/pat.4068
- Mayilswamy, N., Jaya Prakash, N., & Kandasubramanian, B. (2023). Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. International Journal of Polymeric Materials and Polymeric Biomaterials, 72(6), 433–459. https://doi.org/10.1080/00914037.2021.2021905
- Qi, Y., Zhai, H., Sun, Y., Xu, H., Wu, S., & Chen, S. (2021). Electrospun hybrid nanofibrous meshes with adjustable performance for potential use in soft tissue engineering. Textile Research Journal, 92(9–10), 1537–1549. https://doi.org/10.1177/00405175211063904
- Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60(1), 75–80. https://doi.org/10.1007/s13213-010-0015-6
- Raina, N., Pahwa, R., Khosla, J. K., Gupta, P. N., & Gupta, M. (2022). Polycaprolactone-based materials in wound healing applications. Polymer Bulletin, 79(9), 7041–7063. https://doi.org/10.1007/s00289-021-03865-w
- Sahooli, M., Sabbaghi, S., & Saboori, R. (2012). Synthesis and characterization of mono sized CuO nanoparticles. Materials Letters, 81, 169–172. https://doi.org/https://doi.org/10.1016/j.matlet.2012.04.148
- Saracino, E., Cirillo, V., Marrese, M., Guarino, V., Benfenati, V., Zamboni, R., & Ambrosio, L. (2021). Structural and functional properties of astrocytes on PCL based electrospun fibres. Materials Science and Engineering: C, 118, 111363.
- Sarıipek, F. B., Özaytekin, İ., & Erci, F. (2023). Effect of ultrasound treatment on bacteriostatic activity of piezoelectric <scp> PHB‐TiO 2 </scp> hybrid biodegradable scaffolds prepared by electrospinning technique. Journal of Applied Polymer Science, 140(6). https://doi.org/10.1002/app.53437
- Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1), 65. https://doi.org/10.1186/s12951-017-0308-z
- Suganya, S., Senthil Ram, T., Lakshmi, B. S., & Giridev, V. R. (2011). Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. Journal of Applied Polymer Science, 121(5), 2893–2899. https://doi.org/https://doi.org/10.1002/app.33915
- Wang, L., Gang, X., Xiao, Y., Ren, Y., Wang, J., Niu, B., & Li, W. (2023). Preparation of composite films composed of polyvinyl alcohol, shellac and carboxymethyl chitosan-CuO nanoparticles and their application in food preservation. Journal of Polymer Research, 30(2), 63. https://doi.org/10.1007/s10965-023-03438-7
- Wang, Y., Liu, Y., Qian, Y., Lv, L., Li, X., & Liu, Y. (2022). Characteristics of MgO/PCL/PVP antibacterial nanofiber membranes produced by electrospinning technology. Surfaces and Interfaces, 28, 101661. https://doi.org/https://doi.org/10.1016/j.surfin.2021.101661