Research Article
BibTex RIS Cite

DRYING OF GELATIN SOLUTIONS AT DIFFERENT TEMPERATURES; EVALUATION OF KINETIC, THERMODYNAMIC AND FUNCTIONAL PROPERTIES

Year 2023, , 742 - 752, 03.09.2023
https://doi.org/10.17780/ksujes.1297372

Abstract

In this study, the physicochemical properties, drying kinetics and thermodynamics of gelatin solutions obtained from chicken skin, which is indicated as an alternative source, were investigated as a function of drying temperature. The drying amount of gelatin solutions at 40, 50 and 60°C temperatures were followed for the mathematical modeling of drying and the determination of thermodynamic behavior. Meanwhile, the physicochemical properties of powdered gelatin obtained by drying at three different temperatures were compared. It has been determined that the mathematical model that best explains the experimental data of drying at different temperatures is the "Midilli- Küçük" model. At the beginning of the drying process, 0.1386, 0.1728, 0.1848 g water/g dry matter.min drying rates were observed at 40, 50 and 60°C temperatures, respectively. The effective diffusion coefficients (Deff) increased with temperature and were found to be 1.877x10-7, 2.082 x10-7, 2.568 x10-7, respectively, for the same temperatures. The activation energy (Ea) required to initiate moisture diffusion was found to be 13.53 kJ mol-1. With the increase in temperature in the gelatin solution, Gibbs free energy (∆G) values increased, while enthalpy (∆H) and entropy (∆S) values decreased. The gel strength was measured as 343 g, 291 g, and 123 g, respectively, for drying conducted at 40, 50, and 60°C. It was determined that the drying temperature had a negative impact on gel strength. Furthermore, while the viscosity values of the obtained gelatin samples decreased with temperature, the water holding capacity increased. However, it was determined that the thermal stability values (TGA) of the gelatin samples were not affected by the drying temperature. The results clearly showed that different drying temperatures had an effect on both the quality of the gelatin powder and the kinetic and thermodynamic behavior of its solution

References

  • Cansu, Ü., & Boran, G. (2022). Kinetic Evaluation of Gelatin Extraction from Chicken Skin and the Effect of Some Extraction Parameters. Journal of Food Process Engineering, 45 (4), e13995. https://doi.org/10.1111/jfpe.13995
  • Cavalcanti‐Mata, M. E. R. M., Duarte, M. E. M., Lira, V. V., de Oliveira, R. F., Costa, N. L., & Oliveira, H. M. L. (2020). A New Approach to The Traditional Drying Models for The Thin‐Layer Drying Kinetics of Chickpeas. Journal of Food Process Engineering, 43(12), e13569. https://doi.org/10.1111/jfpe.13569
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., & Jang, D. H. (2004). Processing Optimization and Functional Properties of Gelatin from Shark (Isurus oxyrinchus) Cartilage. Food Hydrocolloids, 18, 573–579. https://doi.org/10.1016/j.foodhyd.2003.10.001
  • Corrêa, P. C., de Oliveira, G. H. H., de Oliveira, A. P. L. R., Botelho, F. M., & Goneli, A. L. D. (2017). Thermodynamic Properties of Drying Process and Water Absorption of Rice Grains. CyTA-Journal of Food, 15(2), 204-210. https://doi.org/10.1080/19476337.2016.1238012
  • Dehnad, D., Jafari, S. M., & Afrasiabi, M. (2016). Influence of Drying on Functional Properties of Food Biopolymers: from Traditional To Novel Dehydration Techniques. Trends in Food Science & Technology, 57, 116-131. https://doi.org/10.1016/j.tifs.2016.09.002
  • Deshmukh, A. W., Varma, M. N., Yoo, C. K., & Wasewar, K. L. (2014). Investigation of Solar Drying of Ginger (Zingiber Officinale): Emprical Modelling, Drying Characteristics, and Quality Study. Chinese Journal of Engineering, 2014, 1-7. https://doi.org/10.1155/2014/305823
  • Doymaz, İ. & Aktaş, C. (2018). Patlıcan Dilimlerinin Kurutma ve Rehidrasyon Karakteristiklerinin Belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33 (3), 833-842. https://doi.org/10.17341/gazimmfd.416386
  • Gelatin Manufacturers Institute of America. (2019). GMIA Standard Methods for the Testing of Edible Gelatin, New York, USA (pp. 13–15)
  • Goneli, A. L., Araujo, W. D., Hartmann, C. P., Martins, E. A., & Oba, G. C. (2017). Drying Kinetics of Peanut Kernels in Thin Layers. Engenharia Agrícola, 37, 994-1003.http://dx.doi.org/10.1590/1809-4430 https://doi.org/10.1016/j.jfoodeng.2008.10.040
  • Ismail, M. H., Khan, K. A., Ngadisih, N., Irie, M., Ong, S. P., Hii, C. L., & Law, C. L. (2020). Two‐Step Falling Rate in The Drying Kinetics of Rice Noodle Subjected to Pre‐Treatment and Temperature. Journal of Food Processing and Preservation, 44(11), e14849. https://doi.org/10.1111/jfpp.14849
  • Jideani, V. A., & Mpotokwana, S. M. (2009). Modeling of Water Absorption of Botswana Bambara Varieties Using Peleg’s Equation. Journal of Food Engineering, 92(2), 182-188.
  • Kanwate, B. W., Ballari, R. V., & Kudre, T. G. (2019). Influence of Spray-Drying, Freeze-Drying and Vacuum-Drying on Physicochemical and Functional Properties of Gelatin from Labeo Rohita Swim Bladder. International journal of biological macromolecules, 121, 135-141. https://doi.org/10.1016/j.ijbiomac.2018.10.015
  • Kılıç, E. E. & Çınar, İ. (2019). Convective Hot Airdrying Characteristics of Selected Vegetables. International Advanced Researches and Engineering Journal, 3 (1), 7-13. https://dergipark.org.tr/tr/pub/iarej/issue/44303/449564
  • Kumar, P. S., Nambi, E., Shiva, K. N., Vaganan, M. M., Ravi, I., Jeyabaskaran, K. J., & Uma, S. (2019). Thin layer drying kinetics of Banana var. Monthan (ABB): Influence of Convective Drying on Nutritional Quality, Microstructure, Thermal Properties, Color, and Sensory Characteristics. Journal of Food Process Engineering, 42(4), e13020. https://doi.org/10.1111/jfpe.13020
  • Mondragon, G., Peña-Rodriguez, C., González, A., Eceiza, A., & Arbelaiz, A. (2015). Bionanocomposites Based on Gelatin Matrix and Nanocellulose. European Polymer Journal, 62, 1-9. https://doi.org/10.1016/j.eurpolymj.2014.11.003
  • Morais, M. F. D., dos Santos, J. R., Santos, M. P. D., Santos, D. D. C., Costa, T. N. D., & Lima, J. B. (2019). Modeling and Thermodynamic Properties of ‘Bacaba’pulp Drying. Revista Brasileira de Engenharia Agrícola e Ambiental, 23, 702-708. http://dx.doi.org/10.1590/1807-1929/agriambi.v23n9p702-708
  • Ninan, G., Joseph, J., & Aliyamveetti, Z. (2014). A Comparative Study on The Physical, Chemical and Functional Properties of Carp Skin and Mammalian Gelatins. Journal of Food Science and Technology, 51(9), 2085–2091. DOI 10.1007/s13197-012-0681-4
  • Nuthong, P., Benjakul, S., & Prodpran, T. (2009). Characterization of Porcine Plasma Protein-Based Films as Affected by Pretreatment and Cross-Linking Agents. International Journal of Biological Macromolecules, 44(2), 143-148. https://doi.org/10.1016/j.ijbiomac.2008.11.006
  • Özbek, B., & Dadali, G. (2007). Thin-Layer Drying Characteristics and Modelling of Mint Leaves Undergoing Microwave Treatment. Journal of Food Engineering, 83(4), 541-549. https://doi.org/10.1016/j.jfoodeng.2007.04.004
  • Parlak, N. (2014). Akışkan Yataklı Kurutucuda Zencefilin Kuruma Kinetiğinin İncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29 (2), 261-269. https://doi.org/10.17341/gummfd.34777
  • Rather, J. A., Majid, S. D., Dar, A. H., Amin, T., Makroo, H. A., Mir, S. A., ... & Dar, B. N. (2022). Extraction of Gelatin From Poultry Byproduct: Influence of Drying Method on Structural, Thermal, Functional, and Rheological Characteristics of the Dried Gelatin Powder. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.895197
  • Sae-Leaw, T., Benjakul, S., & O'Brien, N.M. (2014). Effect of Pretreatments and Drying Methods on the Properties and Fishy Odor/Flavor of Gelatin from Seabass (Lates calcarifer) skin. Drying Technology, 34(1), 53–65. https://doi.org/10.1080/07373937.2014.1003071
  • Sahraee, S., Ghanbarzadeh, B., Milani, J. M., & Hamishehkar, H. (2017). Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles. Food and Bioprocess Technology, 10(8), 1441-1453. DOI 10.1007/s11947-017-1907-2
  • Sarbon, N. M., Badii, F., & Howell, N. K. (2013). Preparation and Characterization of Chicken Skin Gelatin as an Alternative to Mammalian Gelatin. Food Hydrocolloids, 30, 143–151. https://doi.org/10.1016/j.foodhyd.2012.05.009
  • Silva, L. P., dos Santos, S. G. F., Queiroz, J. S., Rodovalho, R. S., & Buso, W. H. D. (2020). Drying Kinetics of Soybean Grains. Científica, 48(2), 99-106. https://doi.org/10.15361/1984-5529.2020v48n2p99-106
  • Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017). Understanding The Success of Page's Model and Related Empirical Equations in Fitting Experimental Data of Diffusion Phenomena in Food Matrices. Trends in Food Science & Technology, 62, 194-201. https://doi.org/10.1016/j.tifs.2017.01.003
  • Tan, C.C., Karim, A.A., Uthumporn, U., Ghazali, F.C. (2020). Effect Extraction Temperature on The Emulsifying Properties of Gelatin from Black Tilapia (Oreochromis Mossambicus) Skin. Food Hydrocolloids, 108, 106024. https://doi.org/10.1016/j.foodhyd.2020.106024
  • Turan, O. Y., & Fıratlıgil, E. (2019). Modelling and Characteristics of Thin Layer Convective Air-drying of Thyme (Thymus vulgaris) Leaves. Czech Journal of Food Sciences, 37(2), 128-134.
  • Yıldız, Z. & Gökayaz, L. (2020). Raflı Doğal Konvektif Güneş Enerjili Kurutucuda Elma Kuruma Kinetiğinin İncelenmesi. Engineering Sciences, 15 (1), 34-42. https://dergipark.org.tr/tr/pub/nwsaeng/issue/51947/632701

JELATİN ÇÖZELTİLERİNİN FARKLI SICAKLIKLARDA KURUTULMASI; KİNETİK, TERMODİNAMİK ve FONKSİYONEL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ

Year 2023, , 742 - 752, 03.09.2023
https://doi.org/10.17780/ksujes.1297372

Abstract

Bu çalışmada, alternatif kaynaklar arasında gösterilen tavuk derisinden elde edilen jelatin çözeltilerinin kurutma sıcaklığına bağlı olarak değişen fizikokimyasal özellikleri ile kurutma kinetiği ve termodinamiği araştırılmıştır. Kurutmanın matematiksel modellenmesi ve termodinamik davranışların tespiti için 40, 50 ve 60°C sıcaklıklarda jelatin çözeltilerinin kuruma miktarı takip edilmiştir. Aynı zamanda üç farklı sıcaklıkta kurutularak elde edilen toz jelatinin fizikokimyasal özellikleri karşılaştırılmıştır. Farklı sıcaklıklardaki kurutmaya ait deneysel verileri en iyi açıklayan matematiksel modelin Midilli ve Küçük modeli olduğu tespit edilmiştir. Kurutma sürecinin başlangıcında 40, 50 ve 60°C sıcaklıklarda sırasıyla 0.1386, 0.1728, 0.1848 g su/g kuru madde.dak kurutma hızları gözlenmiştir. Efektif difüzyon katsayıları (Deff) ise sıcaklıkla birlikte artarak aynı sıcaklıklar için sırasıyla 1.877x10-7, 2.082 x10-7, 2.568 x10-7 olarak bulunmuştur. Nem difüzyonunu başlatmak için gereken aktivasyon enerjisi (Ea) ise 13.53 kJ mol-1 olarak bulunmuştur. Jelatin çözeltisinde sıcaklığın artmasıyla birlikte Gibbs serbest enerji (∆G) değerleri artarken entalpi (∆H) ve entropi (∆S) değerleri azalmıştır. Jel gücü, 40, 50 ve 60°C’de yapılan kurutmada sırasıyla 343, 291 ve 123 g olarak ölçülmüş ve kurutma sıcaklığının jel gücünü olumsuz etkilediği tespit edilmiştir. Bununla birlikte, elde edilen jelatin örneklerinin viskozite değerleri sıcaklık ile azalırken su tutma kapasitesi artmıştır. Ancak jelatin örneklerinin termal stabilite değerlerinin (TGA) kurutma sıcaklığından etkilenmediği belirlenmiştir. Sonuçlar, farklı kurutma sıcaklıklarının hem jelatin tozunun kalitesi hem de çözeltisinin kinetik ve termodinamik davranışı üzerinde etkili olduğunu açıkça göstermiştir

References

  • Cansu, Ü., & Boran, G. (2022). Kinetic Evaluation of Gelatin Extraction from Chicken Skin and the Effect of Some Extraction Parameters. Journal of Food Process Engineering, 45 (4), e13995. https://doi.org/10.1111/jfpe.13995
  • Cavalcanti‐Mata, M. E. R. M., Duarte, M. E. M., Lira, V. V., de Oliveira, R. F., Costa, N. L., & Oliveira, H. M. L. (2020). A New Approach to The Traditional Drying Models for The Thin‐Layer Drying Kinetics of Chickpeas. Journal of Food Process Engineering, 43(12), e13569. https://doi.org/10.1111/jfpe.13569
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., & Jang, D. H. (2004). Processing Optimization and Functional Properties of Gelatin from Shark (Isurus oxyrinchus) Cartilage. Food Hydrocolloids, 18, 573–579. https://doi.org/10.1016/j.foodhyd.2003.10.001
  • Corrêa, P. C., de Oliveira, G. H. H., de Oliveira, A. P. L. R., Botelho, F. M., & Goneli, A. L. D. (2017). Thermodynamic Properties of Drying Process and Water Absorption of Rice Grains. CyTA-Journal of Food, 15(2), 204-210. https://doi.org/10.1080/19476337.2016.1238012
  • Dehnad, D., Jafari, S. M., & Afrasiabi, M. (2016). Influence of Drying on Functional Properties of Food Biopolymers: from Traditional To Novel Dehydration Techniques. Trends in Food Science & Technology, 57, 116-131. https://doi.org/10.1016/j.tifs.2016.09.002
  • Deshmukh, A. W., Varma, M. N., Yoo, C. K., & Wasewar, K. L. (2014). Investigation of Solar Drying of Ginger (Zingiber Officinale): Emprical Modelling, Drying Characteristics, and Quality Study. Chinese Journal of Engineering, 2014, 1-7. https://doi.org/10.1155/2014/305823
  • Doymaz, İ. & Aktaş, C. (2018). Patlıcan Dilimlerinin Kurutma ve Rehidrasyon Karakteristiklerinin Belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33 (3), 833-842. https://doi.org/10.17341/gazimmfd.416386
  • Gelatin Manufacturers Institute of America. (2019). GMIA Standard Methods for the Testing of Edible Gelatin, New York, USA (pp. 13–15)
  • Goneli, A. L., Araujo, W. D., Hartmann, C. P., Martins, E. A., & Oba, G. C. (2017). Drying Kinetics of Peanut Kernels in Thin Layers. Engenharia Agrícola, 37, 994-1003.http://dx.doi.org/10.1590/1809-4430 https://doi.org/10.1016/j.jfoodeng.2008.10.040
  • Ismail, M. H., Khan, K. A., Ngadisih, N., Irie, M., Ong, S. P., Hii, C. L., & Law, C. L. (2020). Two‐Step Falling Rate in The Drying Kinetics of Rice Noodle Subjected to Pre‐Treatment and Temperature. Journal of Food Processing and Preservation, 44(11), e14849. https://doi.org/10.1111/jfpp.14849
  • Jideani, V. A., & Mpotokwana, S. M. (2009). Modeling of Water Absorption of Botswana Bambara Varieties Using Peleg’s Equation. Journal of Food Engineering, 92(2), 182-188.
  • Kanwate, B. W., Ballari, R. V., & Kudre, T. G. (2019). Influence of Spray-Drying, Freeze-Drying and Vacuum-Drying on Physicochemical and Functional Properties of Gelatin from Labeo Rohita Swim Bladder. International journal of biological macromolecules, 121, 135-141. https://doi.org/10.1016/j.ijbiomac.2018.10.015
  • Kılıç, E. E. & Çınar, İ. (2019). Convective Hot Airdrying Characteristics of Selected Vegetables. International Advanced Researches and Engineering Journal, 3 (1), 7-13. https://dergipark.org.tr/tr/pub/iarej/issue/44303/449564
  • Kumar, P. S., Nambi, E., Shiva, K. N., Vaganan, M. M., Ravi, I., Jeyabaskaran, K. J., & Uma, S. (2019). Thin layer drying kinetics of Banana var. Monthan (ABB): Influence of Convective Drying on Nutritional Quality, Microstructure, Thermal Properties, Color, and Sensory Characteristics. Journal of Food Process Engineering, 42(4), e13020. https://doi.org/10.1111/jfpe.13020
  • Mondragon, G., Peña-Rodriguez, C., González, A., Eceiza, A., & Arbelaiz, A. (2015). Bionanocomposites Based on Gelatin Matrix and Nanocellulose. European Polymer Journal, 62, 1-9. https://doi.org/10.1016/j.eurpolymj.2014.11.003
  • Morais, M. F. D., dos Santos, J. R., Santos, M. P. D., Santos, D. D. C., Costa, T. N. D., & Lima, J. B. (2019). Modeling and Thermodynamic Properties of ‘Bacaba’pulp Drying. Revista Brasileira de Engenharia Agrícola e Ambiental, 23, 702-708. http://dx.doi.org/10.1590/1807-1929/agriambi.v23n9p702-708
  • Ninan, G., Joseph, J., & Aliyamveetti, Z. (2014). A Comparative Study on The Physical, Chemical and Functional Properties of Carp Skin and Mammalian Gelatins. Journal of Food Science and Technology, 51(9), 2085–2091. DOI 10.1007/s13197-012-0681-4
  • Nuthong, P., Benjakul, S., & Prodpran, T. (2009). Characterization of Porcine Plasma Protein-Based Films as Affected by Pretreatment and Cross-Linking Agents. International Journal of Biological Macromolecules, 44(2), 143-148. https://doi.org/10.1016/j.ijbiomac.2008.11.006
  • Özbek, B., & Dadali, G. (2007). Thin-Layer Drying Characteristics and Modelling of Mint Leaves Undergoing Microwave Treatment. Journal of Food Engineering, 83(4), 541-549. https://doi.org/10.1016/j.jfoodeng.2007.04.004
  • Parlak, N. (2014). Akışkan Yataklı Kurutucuda Zencefilin Kuruma Kinetiğinin İncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29 (2), 261-269. https://doi.org/10.17341/gummfd.34777
  • Rather, J. A., Majid, S. D., Dar, A. H., Amin, T., Makroo, H. A., Mir, S. A., ... & Dar, B. N. (2022). Extraction of Gelatin From Poultry Byproduct: Influence of Drying Method on Structural, Thermal, Functional, and Rheological Characteristics of the Dried Gelatin Powder. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.895197
  • Sae-Leaw, T., Benjakul, S., & O'Brien, N.M. (2014). Effect of Pretreatments and Drying Methods on the Properties and Fishy Odor/Flavor of Gelatin from Seabass (Lates calcarifer) skin. Drying Technology, 34(1), 53–65. https://doi.org/10.1080/07373937.2014.1003071
  • Sahraee, S., Ghanbarzadeh, B., Milani, J. M., & Hamishehkar, H. (2017). Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles. Food and Bioprocess Technology, 10(8), 1441-1453. DOI 10.1007/s11947-017-1907-2
  • Sarbon, N. M., Badii, F., & Howell, N. K. (2013). Preparation and Characterization of Chicken Skin Gelatin as an Alternative to Mammalian Gelatin. Food Hydrocolloids, 30, 143–151. https://doi.org/10.1016/j.foodhyd.2012.05.009
  • Silva, L. P., dos Santos, S. G. F., Queiroz, J. S., Rodovalho, R. S., & Buso, W. H. D. (2020). Drying Kinetics of Soybean Grains. Científica, 48(2), 99-106. https://doi.org/10.15361/1984-5529.2020v48n2p99-106
  • Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017). Understanding The Success of Page's Model and Related Empirical Equations in Fitting Experimental Data of Diffusion Phenomena in Food Matrices. Trends in Food Science & Technology, 62, 194-201. https://doi.org/10.1016/j.tifs.2017.01.003
  • Tan, C.C., Karim, A.A., Uthumporn, U., Ghazali, F.C. (2020). Effect Extraction Temperature on The Emulsifying Properties of Gelatin from Black Tilapia (Oreochromis Mossambicus) Skin. Food Hydrocolloids, 108, 106024. https://doi.org/10.1016/j.foodhyd.2020.106024
  • Turan, O. Y., & Fıratlıgil, E. (2019). Modelling and Characteristics of Thin Layer Convective Air-drying of Thyme (Thymus vulgaris) Leaves. Czech Journal of Food Sciences, 37(2), 128-134.
  • Yıldız, Z. & Gökayaz, L. (2020). Raflı Doğal Konvektif Güneş Enerjili Kurutucuda Elma Kuruma Kinetiğinin İncelenmesi. Engineering Sciences, 15 (1), 34-42. https://dergipark.org.tr/tr/pub/nwsaeng/issue/51947/632701
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Food Engineering
Authors

Ümran Cansu 0000-0002-0504-8308

Erdal Yıldırım 0000-0002-9309-2420

Publication Date September 3, 2023
Submission Date May 15, 2023
Published in Issue Year 2023

Cite

APA Cansu, Ü., & Yıldırım, E. (2023). JELATİN ÇÖZELTİLERİNİN FARKLI SICAKLIKLARDA KURUTULMASI; KİNETİK, TERMODİNAMİK ve FONKSİYONEL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 742-752. https://doi.org/10.17780/ksujes.1297372